版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆上海市楊浦區(qū)重點(diǎn)中學(xué)中考適應(yīng)性考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑畫(huà)弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.22.下列四個(gè)圖形中既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B. C. D.3.函數(shù)的自變量x的取值范圍是()A. B. C. D.4.平面直角坐標(biāo)系內(nèi)一點(diǎn)關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)是()A. B. C. D.5.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長(zhǎng)度為()A.12cm B.12cm C.24cm D.24cm6.在1、﹣1、3、﹣2這四個(gè)數(shù)中,最大的數(shù)是()A.1 B.﹣1 C.3 D.﹣27.若,則x-y的正確結(jié)果是()A.-1 B.1 C.-5 D.58.如圖,點(diǎn)M為?ABCD的邊AB上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點(diǎn)N.當(dāng)點(diǎn)M從A→B勻速運(yùn)動(dòng)時(shí),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,△AMN的面積為S,能大致反映S與t函數(shù)關(guān)系的圖象是()A. B. C. D.9.如圖,點(diǎn)A,B在雙曲線y=(x>0)上,點(diǎn)C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.310.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點(diǎn),若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<011.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點(diǎn)分別落在直線m、n上,∠1=20°,添加下列哪一個(gè)條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°12.如圖,已知射線OM,以O(shè)為圓心,任意長(zhǎng)為半徑畫(huà)弧,與射線OM交于點(diǎn)A,再以點(diǎn)A為圓心,AO長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)B,畫(huà)射線OB,那么∠AOB的度數(shù)是()A.90° B.60° C.45° D.30°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知實(shí)數(shù)m,n滿足,,且,則=.14.規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[1.3]=1,(1.3)=3,[1.3)=1.則下列說(shuō)法正確的是________.(寫(xiě)出所有正確說(shuō)法的序號(hào))①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;②當(dāng)x=﹣1.1時(shí),[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解為1<x<1.5;④當(dāng)﹣1<x<1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個(gè)交點(diǎn).15.分解因式:x3-9x16.如圖,DA⊥CE于點(diǎn)A,CD∥AB,∠1=30°,則∠D=_____.17.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內(nèi)部五個(gè)小直角三角形的周長(zhǎng)為_(kāi)____.18.據(jù)媒體報(bào)道,我國(guó)研制的“察打一體”無(wú)人機(jī)的速度極快,經(jīng)測(cè)試最高速度可達(dá)204000米/分,將204000這個(gè)數(shù)用科學(xué)記數(shù)法表示為_(kāi)____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)為獎(jiǎng)勵(lì)優(yōu)秀學(xué)生,某校準(zhǔn)備購(gòu)買一批文具袋和圓規(guī)作為獎(jiǎng)品,已知購(gòu)買1個(gè)文具袋和2個(gè)圓規(guī)需21元,購(gòu)買2個(gè)文具袋和3個(gè)圓規(guī)需39元。求文具袋和圓規(guī)的單價(jià)。學(xué)校準(zhǔn)備購(gòu)買文具袋20個(gè),圓規(guī)若干,文具店給出兩種優(yōu)惠方案:方案一:購(gòu)買一個(gè)文具袋還送1個(gè)圓規(guī)。方案二:購(gòu)買圓規(guī)10個(gè)以上時(shí),超出10個(gè)的部分按原價(jià)的八折優(yōu)惠,文具袋不打折.①設(shè)購(gòu)買面規(guī)m個(gè),則選擇方案一的總費(fèi)用為_(kāi)_____,選擇方案二的總費(fèi)用為_(kāi)_____.②若學(xué)校購(gòu)買圓規(guī)100個(gè),則選擇哪種方案更合算?請(qǐng)說(shuō)明理由.20.(6分)已知關(guān)于x的一元二次方程為常數(shù).求證:不論m為何值,該方程總有兩個(gè)不相等的實(shí)數(shù)根;若該方程一個(gè)根為5,求m的值.21.(6分)如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.求證:∠C=90°;當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng).22.(8分)如圖,AB是⊙O的直徑,點(diǎn)C是AB延長(zhǎng)線上的點(diǎn),CD與⊙O相切于點(diǎn)D,連結(jié)BD、AD.求證;∠BDC=∠A.若∠C=45°,⊙O的半徑為1,直接寫(xiě)出AC的長(zhǎng).23.(8分)如圖,以AD為直徑的⊙O交AB于C點(diǎn),BD的延長(zhǎng)線交⊙O于E點(diǎn),連CE交AD于F點(diǎn),若AC=BC.(1)求證:;(2)若,求tan∠CED的值.24.(10分)如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0).(1)求點(diǎn)B的坐標(biāo);(2)已知,C為拋物線與y軸的交點(diǎn).①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值.25.(10分)邊長(zhǎng)為6的等邊△ABC中,點(diǎn)D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點(diǎn)為M,邊C′D′與∠ACC′的角平分線交于點(diǎn)N.當(dāng)CC′多大時(shí),四邊形MCND′為菱形?并說(shuō)明理由.如圖2,將△DEC繞點(diǎn)C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點(diǎn)為P.①在旋轉(zhuǎn)過(guò)程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說(shuō)明理由;②連接AP,當(dāng)AP最大時(shí),求AD′的值.(結(jié)果保留根號(hào))26.(12分)如圖,已知△ABC中,AB=BC=5,tan∠ABC=.求邊AC的長(zhǎng);設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求的值.27.(12分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接AD、BD、CD.(1)求證:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個(gè)等邊三角形的面積,分別求出即可.【詳解】過(guò)A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計(jì)算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個(gè)等邊三角形的面積是解此題的關(guān)鍵.2、D【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;D、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)正確.故選D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.3、D【解析】
根據(jù)二次根式的意義,被開(kāi)方數(shù)是非負(fù)數(shù).【詳解】根據(jù)題意得,解得.故選D.【點(diǎn)睛】本題考查了函數(shù)自變量的取值范圍的確定和分式的意義.函數(shù)自變量的范圍一般從三個(gè)方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開(kāi)方數(shù)非負(fù)數(shù).4、D【解析】
根據(jù)“平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是(-x,-y),即關(guān)于原點(diǎn)的對(duì)稱點(diǎn),橫縱坐標(biāo)都變成相反數(shù)”解答.【詳解】解:根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn),∴點(diǎn)A(-2,3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(2,-3),故選D.【點(diǎn)睛】本題主要考查點(diǎn)關(guān)于原點(diǎn)對(duì)稱的特征,解決本題的關(guān)鍵是要熟練掌握點(diǎn)關(guān)于原點(diǎn)對(duì)稱的特征.5、D【解析】
過(guò)A作AD⊥BF于D,根據(jù)45°角的三角函數(shù)值可求出AB的長(zhǎng)度,根據(jù)含30°角的直角三角形的性質(zhì)求出斜邊AC的長(zhǎng)即可.【詳解】如圖,過(guò)A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點(diǎn)睛】本題考查解直角三角形,在直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半,熟記特殊角三角函數(shù)值是解題關(guān)鍵.6、C【解析】
有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對(duì)值大的其值反而小,據(jù)此判斷即可.【詳解】解:根據(jù)有理數(shù)比較大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2這四個(gè)數(shù)中,最大的數(shù)是1.故選C.【點(diǎn)睛】此題主要考查了有理數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對(duì)值大的其值反而?。?、A【解析】由題意,得
x-2=0,1-y=0,
解得x=2,y=1.
x-y=2-1=-1,
故選:A.8、C【解析】分析:本題需要分兩種情況來(lái)進(jìn)行計(jì)算得出函數(shù)解析式,即當(dāng)點(diǎn)N和點(diǎn)D重合之前以及點(diǎn)M和點(diǎn)B重合之前,根據(jù)題意得出函數(shù)解析式.詳解:假設(shè)當(dāng)∠A=45°時(shí),AD=2,AB=4,則MN=t,當(dāng)0≤t≤2時(shí),AM=MN=t,則S=,為二次函數(shù);當(dāng)2≤t≤4時(shí),S=t,為一次函數(shù),故選C.點(diǎn)睛:本題主要考查的就是函數(shù)圖像的實(shí)際應(yīng)用問(wèn)題,屬于中等難度題型.解答這個(gè)問(wèn)題的關(guān)鍵就是得出函數(shù)關(guān)系式.9、B【解析】【分析】依據(jù)點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進(jìn)而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進(jìn)而得到Rt△ABC中,AB=2.【詳解】點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,設(shè)C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負(fù)值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點(diǎn)睛】本題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,注意反比例函數(shù)圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.10、B【解析】由已知拋物線求出對(duì)稱軸,解:拋物線:,對(duì)稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.11、D【解析】
根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,即可得出結(jié)論.【詳解】∵直線EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.12、B【解析】
首先連接AB,由題意易證得△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì),可求得∠AOB的度數(shù).【詳解】連接AB,根據(jù)題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點(diǎn)睛】本題考查了等邊三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握等邊三角形的判定與性質(zhì).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、.【解析】試題分析:由時(shí),得到m,n是方程的兩個(gè)不等的根,根據(jù)根與系數(shù)的關(guān)系進(jìn)行求解.試題解析:∵時(shí),則m,n是方程3x2﹣6x﹣5=0的兩個(gè)不相等的根,∴,.∴原式===,故答案為.考點(diǎn):根與系數(shù)的關(guān)系.14、②③【解析】試題解析:①當(dāng)x=1.7時(shí),[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①錯(cuò)誤;②當(dāng)x=﹣1.1時(shí),[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正確;③當(dāng)1<x<1.5時(shí),4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正確;④∵﹣1<x<1時(shí),∴當(dāng)﹣1<x<﹣0.5時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,當(dāng)﹣0.5<x<0時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,當(dāng)x=0時(shí),y=[x]+(x)+x=0+0+0=0,當(dāng)0<x<0.5時(shí),y=[x]+(x)+x=0+1+x=x+1,當(dāng)0.5<x<1時(shí),y=[x]+(x)+x=0+1+x=x+1,∵y=4x,則x﹣1=4x時(shí),得x=;x+1=4x時(shí),得x=;當(dāng)x=0時(shí),y=4x=0,∴當(dāng)﹣1<x<1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個(gè)交點(diǎn),故④錯(cuò)誤,故答案為②③.考點(diǎn):1.兩條直線相交或平行問(wèn)題;1.有理數(shù)大小比較;3.解一元一次不等式組.15、x【解析】試題分析:要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒(méi)有公因式,若有公因式,則把它提取出來(lái),之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式。因此,先提取公因式x后繼續(xù)應(yīng)用平方差公式分解即可:x216、60°【解析】
先根據(jù)垂直的定義,得出∠BAD=60°,再根據(jù)平行線的性質(zhì),即可得出∠D的度數(shù).【詳解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案為60°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及垂線的定義,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.17、1【解析】分析:由圖形可知,內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個(gè)小直角三角形的周長(zhǎng)為大直角三角形的周長(zhǎng).詳解:由圖形可以看出:內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個(gè)小直角三角形的周長(zhǎng)為AC+BC+AB=1.故答案為1.點(diǎn)睛:本題主要考查了平移的性質(zhì),需要注意的是:平移前后圖形的大小、形狀都不改變.18、2.04×1【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值≥1時(shí),n是非負(fù)數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:204000用科學(xué)記數(shù)法表示2.04×1.故答案為2.04×1.點(diǎn)睛:本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)文具袋的單價(jià)為15元,圓規(guī)單價(jià)為3元;(2)①方案一總費(fèi)用為元,方案二總費(fèi)用為元;②方案一更合算.【解析】
(1)設(shè)文具袋的單價(jià)為x元/個(gè),圓規(guī)的單價(jià)為y元/個(gè),根據(jù)“購(gòu)買1個(gè)文具袋和2個(gè)圓規(guī)需21元;購(gòu)買2個(gè)文具袋和3個(gè)圓規(guī)需39元”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
(2)根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合兩種優(yōu)惠方案,設(shè)購(gòu)買面規(guī)m個(gè),分別求出選擇方案一和選擇方案二所需費(fèi)用,然后代入m=100計(jì)算比較后即可得出結(jié)論.【詳解】(1)設(shè)文具袋的單價(jià)為x元,圓規(guī)單價(jià)為y元。由題意得解得答:文具袋的單價(jià)為15元,圓規(guī)單價(jià)為3元。(2)①設(shè)圓規(guī)m個(gè),則方案一總費(fèi)用為:元方案二總費(fèi)用元故答案為:元;②買圓規(guī)100個(gè)時(shí),方案一總費(fèi)用:元,方案二總費(fèi)用:元,∴方案一更合算?!军c(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.20、(1)詳見(jiàn)解析;(2)的值為3或1.【解析】
(1)將原方程整理成一般形式,令即可求解,(2)將x=1代入,求得m的值,再重新解方程即可.【詳解】證明:原方程可化為,,,,,不論m為何值,該方程總有兩個(gè)不相等的實(shí)數(shù)根.解:將代入原方程,得:,解得:,.的值為3或1.【點(diǎn)睛】本題考查了參數(shù)對(duì)一元二次方程根的影響.中等難度.關(guān)鍵是將根據(jù)不同情況討論參數(shù)的取值范圍.21、(1)見(jiàn)解析(2)【解析】
(1)連接OE,BE,因?yàn)镈E=EF,所以=,從而易證∠OEB=∠DBE,所以O(shè)E∥BC,從可證明BC⊥AC;(2)設(shè)⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點(diǎn)E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設(shè)⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴【點(diǎn)睛】本題考查圓的綜合問(wèn)題,涉及平行線的判定與性質(zhì),銳角三角函數(shù),解方程等知識(shí),綜合程度較高,需要學(xué)生靈活運(yùn)用所學(xué)知識(shí).22、(1)詳見(jiàn)解析;(2)1+【解析】
(1)連接OD,結(jié)合切線的性質(zhì)和直徑所對(duì)的圓周角性質(zhì),利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【詳解】(1)證明:連結(jié).如圖,與相切于點(diǎn)D,是的直徑,即(2)解:在中,.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)圓的認(rèn)識(shí),熟練掌握?qǐng)A的性質(zhì)是解題的關(guān)鍵.23、(1)見(jiàn)解析;(2)tan∠CED=【解析】
(1)欲證明,只要證明即可;(2)由,可得,設(shè)FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,由,可得BD?BE=BC?BA,設(shè)AC=BC=x,則有,由此求出AC、CD即可解決問(wèn)題.【詳解】(1)證明:如下圖,連接AE,∵AD是直徑,∴,∴DC⊥AB,∵AC=CB,∴DA=DB,∴∠CDA=∠CDB,∵,,∴∠BDC=∠EAC,∵∠AEC=∠ADC,∴∠EAC=∠AEC,∴;(2)解:如下圖,連接OC,∵AO=OD,AC=CB,∴OC∥BD,∴,∴,設(shè)FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,∵∠BAD=∠BEC,∠B=∠B,∴,∴BD?BE=BC?BA,設(shè)AC=BC=x,則有,∴,∴,∴,∴.【點(diǎn)睛】本題屬于圓的綜合題,涉及到三角形的相似,解直角三角形等相關(guān)考點(diǎn),熟練掌握三角形相似的判定及解直角三角形等相關(guān)內(nèi)容是解決本題的關(guān)鍵.24、(1)點(diǎn)B的坐標(biāo)為(1,0).(2)①點(diǎn)P的坐標(biāo)為(4,21)或(-4,5).②線段QD長(zhǎng)度的最大值為.【解析】
(1)由拋物線的對(duì)稱性直接得點(diǎn)B的坐標(biāo).(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點(diǎn)C的坐標(biāo),得到,設(shè)出點(diǎn)P的坐標(biāo),根據(jù)列式求解即可求得點(diǎn)P的坐標(biāo).②用待定系數(shù)法求出直線AC的解析式,由點(diǎn)Q在線段AC上,可設(shè)點(diǎn)Q的坐標(biāo)為(q,-q-3),從而由QD⊥x軸交拋物線于點(diǎn)D,得點(diǎn)D的坐標(biāo)為(q,q2+2q-3),從而線段QD等于兩點(diǎn)縱坐標(biāo)之差,列出函數(shù)關(guān)系式應(yīng)用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,且A點(diǎn)的坐標(biāo)為(-3,0),∴點(diǎn)B的坐標(biāo)為(1,0).(2)①∵拋物線,對(duì)稱軸為,經(jīng)過(guò)點(diǎn)A(-3,0),∴,解得.∴拋物線的解析式為.∴B點(diǎn)的坐標(biāo)為(0,-3).∴OB=1,OC=3.∴.設(shè)點(diǎn)P的坐標(biāo)為(p,p2+2p-3),則.∵,∴,解得.當(dāng)時(shí);當(dāng)時(shí),,∴點(diǎn)P的坐標(biāo)為(4,21)或(-4,5).②設(shè)直線AC的解析式為,將點(diǎn)A,C的坐標(biāo)代入,得:,解得:.∴直線AC的解析式為.∵點(diǎn)Q在線段AC上,∴設(shè)點(diǎn)Q的坐標(biāo)為(q,-q-3).又∵QD⊥x軸交拋物線于點(diǎn)D,∴點(diǎn)D的坐標(biāo)為(q,q2+2q-3).∴.∵,∴線段QD長(zhǎng)度的最大值為.25、(1)當(dāng)CC'=時(shí),四邊形MCND'是菱形,理由見(jiàn)解析;(2)①AD'=BE',理由見(jiàn)解析;②.【解析】
(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質(zhì)得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉(zhuǎn)的性質(zhì),即可判斷出△ACD≌△BCE'即可得出結(jié)論;②先判斷出點(diǎn)A,C,P三點(diǎn)共線,先求出CP,AP,最后用勾股定理即可得出結(jié)論.【詳解】(1)當(dāng)CC'=時(shí),四邊形MCND'是菱形.理由:由平移的性質(zhì)得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當(dāng)α≠180°時(shí),由旋轉(zhuǎn)的性質(zhì)得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當(dāng)α=180
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)制混凝土構(gòu)件加工項(xiàng)目環(huán)境評(píng)估與保護(hù)合同(二零二五年度)3篇
- 2025年廠房門(mén)窗安裝與節(jié)能改造一體化服務(wù)合同3篇
- 二零二五年度電梯智能化改造升級(jí)項(xiàng)目合同3篇
- 2025年度特色農(nóng)產(chǎn)品餐飲供應(yīng)鏈配送服務(wù)合同協(xié)議3篇
- 2025年長(zhǎng)毛山羊毯項(xiàng)目投資可行性研究分析報(bào)告
- 2024水產(chǎn)品進(jìn)口與出口代理服務(wù)合同3篇
- 2025年中國(guó)工業(yè)級(jí)光電轉(zhuǎn)換器行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 二零二五年智能家居產(chǎn)品代言人聘用合同2篇
- 二零二五年數(shù)據(jù)中心消防設(shè)施建設(shè)與運(yùn)維合同3篇
- 2025年度標(biāo)準(zhǔn)化個(gè)人商鋪二手房置換合同3篇
- 2025年度影視制作公司兼職制片人聘用合同3篇
- 兒童糖尿病的飲食
- 2025屆高考語(yǔ)文復(fù)習(xí):散文的結(jié)構(gòu)與行文思路 課件
- 干細(xì)胞項(xiàng)目商業(yè)計(jì)劃書(shū)
- 拉薩市2025屆高三第一次聯(lián)考(一模)語(yǔ)文試卷(含答案解析)
- 浙江省嘉興市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末試題含解析
- 2024年高考新課標(biāo)Ⅱ卷語(yǔ)文試題講評(píng)課件
- 無(wú)人機(jī)航拍技術(shù)教案(完整版)
- 人教PEP版(2024)三年級(jí)上冊(cè)英語(yǔ)Unit 4《Plants around us》單元作業(yè)設(shè)計(jì)
- 《保密法》培訓(xùn)課件
- 醫(yī)院項(xiàng)目竣工驗(yàn)收和工程收尾階段的管理措施專項(xiàng)方案
評(píng)論
0/150
提交評(píng)論