版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東德州市陵城區(qū)一中高考數(shù)學必刷試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.22.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為()A.0 B.1 C.2 D.33.復數(shù)().A. B. C. D.4.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.5.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.復數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.7.三棱柱中,底面邊長和側棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.8.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數(shù)學家傅立葉研究了樂聲的本質,他證明了所有的樂聲都能用數(shù)學表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構成樂音的是()A. B. C. D.9.已知集合,定義集合,則等于()A. B.C. D.10.在中,內角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列11.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3312.空氣質量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質量越好,下圖是某市10月1日-20日指數(shù)變化趨勢,下列敘述錯誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個月的空氣質量越來越好D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量好二、填空題:本題共4小題,每小題5分,共20分。13.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.14.如圖,在平行四邊形中,,,則的值為_____.15.若滿足,則目標函數(shù)的最大值為______.16.若,則的展開式中含的項的系數(shù)為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當平面,求的值;(2)當是中點時,求四面體的體積.18.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.19.(12分)已知函數(shù).(1)設,求函數(shù)的單調區(qū)間,并證明函數(shù)有唯一零點.(2)若函數(shù)在區(qū)間上不單調,證明:.20.(12分)定義:若數(shù)列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項,則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項,則存在多少正整數(shù)對使得且的概率為.21.(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知圓,定點,為平面內一動點,以線段為直徑的圓內切于圓,設動點的軌跡為曲線(1)求曲線的方程(2)過點的直線與交于兩點,已知點,直線分別與直線交于兩點,線段的中點是否在定直線上,若存在,求出該直線方程;若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于中檔題.2、C【解析】
設,則,則,即可得,設,利用導函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導函數(shù)處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.3、A【解析】試題分析:,故選A.【考點】復數(shù)運算【名師點睛】復數(shù)代數(shù)形式的四則運算的法則是進行復數(shù)運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化.4、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于基礎題.5、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數(shù)學運算,邏輯推理能力,屬于基礎題.6、C【解析】
直接利用復數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復數(shù)的除法的運算法則的應用,考查計算能力.7、B【解析】
設,,,根據向量線性運算法則可表示出和;分別求解出和,,根據向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關鍵是能夠通過向量的線性運算、數(shù)量積運算將問題轉化為向量夾角的求解問題.8、C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.9、C【解析】
根據定義,求出,即可求出結論.【詳解】因為集合,所以,則,所以.故選:C.【點睛】本題考查集合的新定義運算,理解新定義是解題的關鍵,屬于基礎題.10、C【解析】
由等差數(shù)列的性質、同角三角函數(shù)的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.11、C【解析】
依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.12、C【解析】
結合題意,根據題目中的天的指數(shù)值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數(shù)值中有個低于,個高于,其中第個接近,第個高于,所以中位數(shù)略高于,故正確.對于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對于,由圖可知該市月的前天的空氣質量越來越好,從第天到第天空氣質量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質量比中旬的空氣質量好,故正確.故選:【點睛】本題考查了對折線圖數(shù)據的分析,讀懂題意是解題關鍵,并能運用所學知識對命題進行判斷,本題較為基礎.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),根據題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,14、【解析】
根據ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.【點睛】本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運算,考查了計算能力,屬于基礎題.15、-1【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標函數(shù)為,由圖可得,當直線過點時,直線在軸上的截距最大,由得即,則有最大值,故答案為.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.16、【解析】
首先根據定積分的應用求出的值,進一步利用二項式的展開式的應用求出結果.【詳解】,根據二項式展開式通項:,令,解得,所以含的項的系數(shù).故答案為:【點睛】本題考查定積分,二項式的展開式的應用,主要考查學生的運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)利用線面垂直的性質得出,進而得出,利用相似三角形的性質,得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又因為,都垂直于平面,所以又,分別是正方形邊,的中點,且,所以.(2)因為,分別是正方形邊,的中點,所以又因為,都垂直于平面,平面,所以因為平面,所以平面所以,四面體的體積,所以.【點睛】本題主要考查了線面垂直的性質定理的應用,以及求棱錐的體積,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意可知:由,求得點坐標,即可求得橢圓的方程;(Ⅱ)設直線,代入橢圓方程,由韋達定理,由,由為銳角,則,由向量數(shù)量積的坐標公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據題意是等腰直角三角形,,設由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據題意,直線的斜率存在,可設方程為設由得由直線與橢圓有兩個不同的交點則即得又為銳角則即②由①②得或故直線斜率可取值范圍是【點睛】本題考查橢圓的標準方程及簡單幾何性質,考查直線與橢圓的位置關系,考查向量數(shù)量積的坐標運算,韋達定理,考查計算能力,屬于中檔題.19、(1)為增區(qū)間;為減區(qū)間.見解析(2)見解析【解析】
(1)先求得的定義域,然后利用導數(shù)求得的單調區(qū)間,結合零點存在性定理判斷出有唯一零點.(2)求得的導函數(shù),結合在區(qū)間上不單調,證得,通過證明,證得成立.【詳解】(1)∵函數(shù)的定義域為,由,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個零點:∵,所以函數(shù)在區(qū)間內有零點,∵,函數(shù)在區(qū)間上沒有零點,故函數(shù)只有一個零點.(2)證明:函數(shù),則當時,,不符合題意;當時,令,則,所以在上單調增函數(shù),而,又∵區(qū)間上不單調,所以存在,使得在上有一個零點,即,所以,且,即兩邊取自然對數(shù),得即,要證,即證,先證明:,令,則∴在上單調遞增,即,∴①在①中令,∴令∴,即即,∴.【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調區(qū)間和零點,考查利用導數(shù)證明不等式,考查分類討論的數(shù)學思想方法,考查化歸與轉化的數(shù)學思想方法,屬于難題.20、(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據古典概型的方法可知,利用組合數(shù)的計算公式可得,當時根據題意有,共個;當時求得,再根據換元根據整除的方法求解滿足的正整數(shù)對即可.【詳解】解:(1)三個數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計數(shù)原理得:為“﹣數(shù)列”中的任意三項,則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項共有種,根據古典概型有:,再根據組合數(shù)的計算公式能得到:,時,應滿足,,共個,時,應滿足,視為常數(shù),可解得,,根據可知,,,,根據可知,,(否則),下設,則由于為正整數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國飼料中間體化學品行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球高速標簽打印機行業(yè)調研及趨勢分析報告
- 2025年全球及中國汽車座椅加熱通風線束行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球條形碼庫存管理系統(tǒng)行業(yè)調研及趨勢分析報告
- 2025-2030全球生物基電池行業(yè)調研及趨勢分析報告
- 2025年全球及中國農場畜牧管理軟件行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球印刷級熱敏紙行業(yè)調研及趨勢分析報告
- 擔保函保證合同
- 2025監(jiān)控售后維修合同
- 房屋買賣合同范文
- 成人氧氣吸入療法-中華護理學會團體標準
- Unit-3-Reading-and-thinking課文詳解課件-高中英語人教版必修第二冊
- 高數(shù)(大一上)期末試題及答案
- 北方春節(jié)的十大風俗
- 婚介公司紅娘管理制度
- 煤礦電氣試驗規(guī)程
- JCT796-2013 回彈儀評定燒結普通磚強度等級的方法
- 物業(yè)客服培訓課件PPT模板
- 員工工資條模板
- 火力發(fā)電廠節(jié)能管理制度實施細則
- 華為攜手深圳國際會展中心創(chuàng)建世界一流展館
評論
0/150
提交評論