




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
FromDeepLearningtoRationalMachines–FinalManuscriptVersion–CameronBuckner
cjbuckner@
PAGE
10
ThisisadraftofachapterthathasbeenacceptedforpublicationbyOxfordUniversityPressintheforthcomingbook:
FromDeepLearningtoRationalMachines
WhattheHistoryofPhilosophyCanTeachUsabouttheFutureofArtificialIntelligence
byCameronJ.Bucknerdueforpublicationin2023
Chapter1
ModerateEmpiricismandMachineLearning
Insteadoftryingtoproduceaprogrammetosimulatetheadultmind,whynotrathertrytoproduceonewhichsimulatesthechild's?Ifthiswerethensubjectedtoanappropriatecourseofeducationonewouldobtaintheadultbrain.Presumablythechild-brainissomethinglikeanote-bookasonebuysitfromthestationers.Ratherlittlemechanismandlotsofblanksheets.…Ourhopeisthatthereissolittlemechanisminthechild-brainthatsomethinglikeitcanbeeasilyprogrammed.
-AlanM.Turing(1950)
1.1Playingwithfire?Naturevs.nurtureforcomputerscience
Inhumaninquiry,theintroductionofagranddichotomy—goodvs.evil,mortalvs.divine,emotionvs.reason—cantakeonthevitalimportance,aswellastheattendantdanger,ofthediscoveryoffire.Whilesuchdichotomiessupportqualitativeshiftsinthereachofourtheorizing,theyareoftenquicklytakenforgranted,perhapstooquickly,asanelementalforcegoverningtheworldandourplacewithinit.Thedistinctionbetweennatureandnurturestandsasaprimeexample.Thisoppositionhasanimatedthehumanintellectforthousandsofyears,motivatingthesystematicexplorationofcompetingstylesoftheoryinnearlyeveryacademicdiscipline.Wetendtohavestrongintuitionsastowhetherhumanknowledgeisproducedbyturninginwardtounpackourinnatementalendowmentorbyturningoutwardtointerpretthecipherofexperience,andtheenergyprovidedbytheseintuitionshaspoweredavarietyofscientificandtechnologicalinnovations.AswithotherPrometheanbargains,however,suchadvancesareboughtattheexpenseofnewandpersistentdangers.Vigorouslyrubbingtheseopposingintuitionsagainstoneanothercangeneratefrictionwithoutillumination,causingtheoriststopursuearesearchprogramlongafteritsempiricalprospectshavegrowncold,ortolosesightofthedetailsofoneanother’sviewsinahazeofmisunderstandingand
exaggeration.And,ofcourse,firesthatgrowtoolargecanburndangerouslyoutofcontrol.Lestwegetsinged,thesedistinctionsmustbecontinuouslywatchedandcarefullytended—particularlywhenapowerfulnewsourceoffuelistossedintotheflames.
Wearenowinthemiddleofjustsuchaconflagration,andthenewfuelsourcegoesbythenameof“deeplearning.”Indeed,fundingandresearchfordeeplearningiscurrentlyblazing;asof2023,everymajortechcompany’smarqueeR&Dgroupisfocusedondeeplearning,withfiercebiddingwarsfortoptalent.
MostissuesofprestigepublicationslikeScienceandNaturefeatureoneofthesegroups’latestexperiments.Thesepublicationsreportaseriesoftransformativebreakthroughsinartificialintelligence,includingsystemsthatcan:recognizecomplexobjectsinnaturalphotographsaswellorbetterthanhumans;defeathumangrandmastersinstrategygamessuchaschess,Go,shoji,orStarcraftII;createnovelpicturesandbodiesoftextthataresometimesindistinguishablefromthoseproducedbyhumans;siftthroughthefaintestradioechoestodiscovernewexoplanetsorbitingstarsthousandsoflightyearsaway;crunchmassiveamountsofdatageneratedbyparticleacceleratorstotrytofindcounterexamplestotheStandardModelinphysics;andpredicthowproteinswillfoldmoreaccuratelythanhumanmicrobiologistswhohavedevotedtheirlivestothetask.1
Inshort,deeplearning’scurrentfortunesarewhite-hot;but,aswithallsystemsofknowledgeacquisition,ourexpectationsofitscontinuedprosperityareshapedbyourviewsonthenature-nurturedichotomy.Deeplearning’scurrentstatusandfuturedevelopmentarethereforemeaningfullyinformedbyphilosophicalpositions,particularlythoseonofferinthehistoricallygroundedbutongoingdebatebetweenempiricistsandnativists.Atfirstblush,thisdebateconcernstheoriginsofhumanknowledge:empiricistsholdthatknowledgeisderivedfromsensoryexperience,whereasnativiststendtoberationalistswhoinsteadprizeourcapacitytoreason—usuallydrivenbyaninnatetheoryoftheworld’sbasicstructureand/orof
1Fordetails,see(Baldi,Sadowski,andWhiteson2014;Brownetal.2020;Chowdheryetal.2022;Jumperetal.2021;Krizhevsky,Sutskever,andHinton2012;Rameshetal.2022;ShallueandVanderburg2018;Silveretal.2017;Vinyalsetal.2019).
rationalminds—asthesourceofgenuineknowledge.2Whentreatedasanapproachtoartificialintelligence,deeplearningisalreadyidentifiedasanurture-favoring,empiriciststyleoftheory,thoughIarguethatitsachievementsvindicateamoderatelyempiricistapproachtocognitionthatismorenuancedandresourcefulthantheempiricismtypicallysurveyedinevaluationsofdeeplearning’spotential.Thismoderatelyempiricistapproach,legitimatedbyaninvestigationofthehistoricaloriginsofthephilosophicaldebateintheworkofinfluentialempiricistphilosophersandtheapplicationoftheirviewstotherelationshipbetweenmachinelearningmodelsandthemind,suggeststhattoday’sachievementsindeeplearningsubstantiallyincreasetheplausibilitythatrationalcognitioncanbeachieved—andisachieved,inhumans,manyanimals,and,ifwehopetosucceed,artificialagents—withouttheaidoftheinnatetheoriesorconceptsusuallyrecommendedbytheopposed,nature-favoring,rationalistfactionoftheorists.
Whileempiricistandnativiststheoristsfightoverthepast,present,andfutureofdeeplearningsystemsdevelopment,thecurrententhusiasmforempiricisminengineeringandbusinessthreatenstoburnoutofcontrol—thoughthisparticularstrainofempiricismsometimesdrawsoxygenfromasimplisticunderstandingoftherelationshipbetweenthesuccessesofdeeplearningsystemsandthewaythathumansandanimalsactuallysolveproblems.Researchismovingsorapidlythataninfluentialdeeplearningpublicationcanreceive20,000citationsbythetimeitisonlytwoorthreeyearsold—manyofthosewhileitisavailableonlyonapre-printarchive,meaningthatithasnotyetgonethroughthenormalprocessofpeer-reviewbyotheracademicswhocouldskepticallyassessitsclaims.Meanwhile,leadingnativistsaregoinghoarsecallingforthefirebrigade.Thesenativistsworrythatdeeplearningisbeingappliedtoawiderangeofproblemswithoutafirmunderstandingofhoworwhyitworks,andthatthesolutionsdiscoveredbydeeplearningagentsarebrittleanddonotgeneralizetonewsituationsaswellasthestrategiesdeployedbyhumansandanimals.Dependinguponwhetheryouaskempiricistsornativists,deeplearningsystemscaneitheralreadyprocessinputdatasoeffectivelythattheyareatleastslightlyconsciousandonthevergeofachievingescapevelocityintoworld-spanningsuperintelligence,ortheycandolittlemorethanbludgeonproblemswith
2Toforestallconfusion,thephilosophicalrationalismattributabletothinkerslikeDescartes,Leibniz,andSpinozaisnottobeconflatedwiththenew“rationalism”associatedwithblogslikeLessWrongorSlateStarCodex,forwhichthetraditionalphilosophicaldistinctionisorthogonal.
massiveamountsofstatisticsandlinearalgebrathatcanimitatetheoutwardappearanceofhumanintelligencebut,becausetheylacktheunderlyingstructureprovidedbythehumanmind’sinnatestartupsoftware,willnevercaptureeventhemostbasicaspectsofhumanmentality.
Althoughdeeplearningcanbeunderstoodinpurelytechnicaltermsoutsidethenature-nurturedichotomy,andhenceoutsidetheempiricist-nativistdebate,itisdifficulttoassessitsprospectsasaroutetoartificialintelligenceexceptthroughitslight,withallitsattendantprospectsandperils.Thisdebateofcoursehasancienthistoricalorigins,yetinfluentialscientistsfrequentlyinvokeitstermstoexplainandmotivatetheircurrentviews.Forinstance,inafrontNaturearticle,ateamfromGoogle’sDeepMinddivisionpitchedtheirAlphaZerosystem—whichcaneasilydefeathumangrandmastersattheChineseboardgameofGo,agamethatisinsomewaysmorecomplexthanchess—asoperatingwitha“tabularasa”orblankslatealgorithm(Silveretal.2017).ThisempiricistmetaphorenteredtheWesternlexiconviaAristotle’sDeAnima(III,429b-430a),whichcomparesthehumanmindtothewax-coveredtabletswhichtheGreekacademiesusedfornotes;thesetabletswere“blanked”byheatingthemuntilthewaxmelted,smoothingthesurfaceforre-use.Themetaphorfortheinfant’smindbecamecanonicalthroughitsrepetitionbyarangeofempiricistphilosophers,fromAristotle’sinheritorsIbnSina(Avicenna)andSt.ThomasAquinas(thelatterofwhichsummarizeditwiththePeripateticMaxim,whichstatesthat“nihilestinintellectuquodnonsitpriusinsensu”or“nothinginthemindwhichisnotfirstinthesenses”—DeVeritate2.3.19),totheEarlyModernempiricistsJohnLockeandDavidHume,withwhomtheviewistodaymostcommonlyassociated.3
Deeplearningenthusiastsarenottheonlyonestosummonthehistoryofphilosophyinthiscontext.
Contemporarynativistshavealsobeeneagertoalignthecurrentdebatewithhistoricalpositions.InhiscritiqueoftheAlphaZeropaper,forexample,thenativistpsychologistGaryMarcusassociatesSilveretal.’sblankslatelanguagewiththeviewsofLocke,whowrotethat“allideascomefromsensationorreflection”(E
3Otherphilosophicaltraditionsalsohaveviewswhichappearrecognizablyempiricistbythestandardsofthisdebate;forexample,someoftheYogācāraBuddhistphilosopherslikeDharmakīrtiareidentifiedasempiricistbyinterpreters(Powers1994;Tillemans2021)andsomehaveevenwonderedwhetherWesternempiricistslikeHumewereinfluencedbyexposuretoBuddhistphilosophy(Gopnik2009).Othercommentators,however,viewsuchtrans-culturallinkageswithskepticism(Conze1963;Montalvo1999).Atanyrate,averyinterestingbooksimilartothisonecouldbewrittenbydrawinguponthefacultypsychologyinthesealternativetraditionstointerpretandguidethedevelopmentofdeeplearning.IamgratefultoAmitChaturvadifordrawingmyattentiontothesepotentialparallels.
II.ii.2).MarcuscouldjustaswellhavelinkedittoHume,whodeclaredthat“alloursimpleideasintheirfirstappearancearederiv’dfromsimple[sensory]impressions”(commonlyreferredtoashis“CopyPrinciple”–T/4).Hume,however,ismorefrequentlythetargetofJudeaPearl.Oneofthemostinfluentiallivingcomputerscientistsandafrequentdeeplearningcritic,Pearlhasrecentlyworriedthatdeeplearningtheoriststakeasself-evidenta“radicalempiricism”accordingtowhichallknowledge“canbeanalyzedbyexaminingpatternsofconditionalprobabilitiesinthedata”(2021).4
Thehistoryofphilosophycertainlyspeakstodeeplearning’sachievements,butnotintermsassimpleastheseinterlocutorssuggest.Wheretheyseeastarkdichotomy,LockeandHumedeveloptheirkeystonemantrasintoanelaborateempiricisttheoryofhumancognitionthatismorenuancedandflexible.Infact,mostresearchindeeplearningismotivatedbyasetofassumptionsmoreconsistentwiththesephilosophers’lessradicaltakeonempiricism,andoneofthemaintasksofthisbookistoarticulateexactlywhichversionofempiricismismostsupportedbyrecentdevelopments.Identifyingandclarifyingthemoderatelyempiricistapproachtoooftenlostintheflashpointdebatescanunlockuntappedexplanatorypower,bothforunderstandingdeeplearning’scurrentmethodsandforchartingtheoptimalcoursetofuturebreakthroughs.Thechallengeisthataswithpoliticalslogans,eventheseeminglysimplestatementsoftheempiricistcreedcanmeandifferentthingstodifferentconstituencies.Byputtingintheinterpretiveworktounderstandthemcharitably,wecanavoidtalking-pastanddirectevaluativeeffortstowardsfruitfulfutureresearch.
Unsurprisingly,eventhemostprominentnativistsandempiriciststodayinterprettheaforementionedsloganstoimplyquitedifferentthings.Nativist-leaningtheoriststendtoassociateblankslateswiththelastgreatempiricistinferno,thebehavioristmovementinAmericanpsychology,whichreachedtheheightofitspowerandthenquicklydwindledtoembersinthemiddleofthelastcentury.Suchtheoriststypicallyconnecttheempiricistblankslatewithradicallyinsufficientexplanationsforhumanlearning.StevenPinkerarticulatesthisperspectiveclearlyinhisbookTheBlankSlate.AccordingtoPinker,today’sempiricistshaverevivedthe
4Ingeneral,Pearlislessconcernedherewiththedebateovernativismandanti-nativisminpsychologythantheseothercritics,andmoreengagedinthebattlebetweenskepticalHumeanandrealistapproachestocausationinmetaphysicsandphilosophyofscience.
doomedmissionofthebehaviorists,who“throughmostofthe20thcentury…triedtoexplainallofhumanbehaviorbyappealingtoacoupleofsimplemechanismsofassociationandconditioning”(Pinker2003).5Lakeetal.alsocalledoutthe“strongempiricismofmodernconnectionistmodels”whichtheyidentifywiththe“oversimplifiedbehaviorism”thatwas“repudiated”bythecognitiverevolutioninthelatterhalfofthe20thcentury(2017,p.4).ThisreportedabrogationoccurredwhenNoamChomskysmotheredbehaviorismunderawaveofhis“Cartesianlinguistics,”whichexplicitlyinvokedtherationalistnativismofFrenchphilosopherRenéDescartes(Chomsky1966)toinspirehisargumentsforanintricatesetofinnategrammaticalrulestoexplainhumanlinguisticability.6Marcusevenformalizesthisbehavioristinterpretationofempiricismbydefiningcognitionasafunctionrangingoverfourvariables:
cognition=f(a,r,k,e),
wherea=algorithms,r=representationalformats,k=innateknowledge,ande=experience.Marcus’construaloftheempiricistapproach—which,asmentionedabove,MarcusattributestoLocke—“wouldsetkandrtozero,setatosomeextremelyminimalvalue,(e.g.,anoperationforadjustingweightsrelativetoreinforcementsignals),andleavetheresttoexperience”(Marcus2018).7
Onthispoint,nativistspracticesomethingoftheradicalsimplificationtheycritique,byassumingthatforthemindtobe“blank”atbirth,itmustbeginwithvirtuallynoinnatestructureatall.ThemorecharitablenativistphilosophersLaurenceandMargolis(2015)haverecentlyworriedthatsummarizingcurrentdebatesincognitivescienceasthequestionofwhetherthemindhasanyinnatestructurewhatsoeverhastheunfortunateconsequencethat“therearen’treallyanyempiricists.”8Inreality,acompletelystructurelessmind,likeaninertmineralslab,wouldnotlearnanythingbybeingsubjectedtoanyamountofstimulus.Thisseems
5SeealsoChilders,Hvorecky,andMeyer(2021),whoalsolinkdeeplearningtobehaviorism;Idefendaverydifferentapproachtolinkingdeeplearningtothehistoryoftheempiricist-rationalistdebate.
6Whilealsoendorsingarichpackageof“startupsoftware”forthemind(whichintheirfavoredBayesianmodelsistypicallyprogrammedmanuallyinsymbolicform,includingmanuallyspecifiedrepresentationalprimitivesandpriorprobabilityestimations)whichtheythinkshouldincludecomponentsofCoreKnowledge,Lakeetal.(2017)areofficiallyagnosticastowhetherthatsoftwareisinnateorlearnedveryearlyinchildhood.
7Whatdoes“innate”meanhere?Anentiresubareaofphilosophyofsciencehasburgeonedaroundthequestionofhowbesttodefineinnateness(Ariew1996;GriffithsandMachery2008;Khalidi2001,2016,2016;MallonandWeinberg2006;MameliandBateson2006;NorthcottandPiccinini2018;Samuels2004,2007).Forpresentpurposes,wecanproceedwithaminimalistnotionthatimpliesatleast“notlearned”(Ritchie2021).
8Theempiricist-leaningdevelopmentalpsychologistLindaSmithhasalsocriticizedthisframinginherarticle,“Avoidingassociationswhenit’sbehaviorismyoureallyhate”(Smith2000).
tobesomethingthatnearlyallinfluentialempiricistshaveacknowledged.Backinthetwilightofbehaviorism’sreign,theempiricistphilosopherWillardvanOrmanQuineobservedthateventhemostradicalbehaviorists,likeJohnWatsonandB.F.Skinner,were“knowinglyandcheerfullyupto[their]neckininnatemechanisms”(quotedinLaurenceandMargolis2015;Quine1969:95–96):theymustassumearicharrayofbiologicalneeds,sensorymechanisms,attentionalbiases,andreflexivebehaviorswhichcouldbeassociatedwithoneanotherbeforeeventhesimplestformsofassociativelearningcouldbegin.Theitemsonthislistsuitorganismstotheirevolutionarynicheswithoutappealtoinnateknowledgestructures,illustratingwhyamoredetailedexaminationofempiricist-brandedtheorizinginbothphilosophyandcomputerscienceisrequired.Amoresystematicexaminationofthehistoryofempiricisttheorizingquicklyrevealsappealstoinnatefactorsmoreexpansivethanthislist.Thus,whileMarcus’formalizedmodelofempiricismissharperthantheempiricistmantrasinitsimplications,itisalsolessuseful,particularlyifweaimforacharitableevaluationofdeeplearning’sprospects.
Theprecedingillustrationoftheempiricist-nativistdichotomy,asitinformsthedevelopmentofdeeplearningsystems,offersaparadigmaticexampleofthenature-nurturedichotomy’senduringinfluenceonhumanthought.Bothdistinctionsaretoooftenresolvedintostarkbinaries,whereasthedebateisbetterrepresentedintermsofsubtlecontinuumsanddifferencesamongststylesofexplanation.Althoughthepersistenceoftheoppositionbetweennatureandnurturesuggestsanunsolvablephilosophicalriddleattheheartofknowledgeacquisition,itcan,withcare,beofusetous.Thesameistrueoftheempiricist-nativistdichotomy.Wheninterpretedwithmoreattentiontothehistoryofphilosophyanditsprecisecontextofapplication,itcanencouragemoreusefulandprincipleddebatesbetweendistinctresearchmethodologies.
Infact,incaseswherescientistshavetakenpainstounderstandthedebate’shistory,itcanbeseentohavefosterednotablescientificdiscoveriesofthelastcentury,suchasAlbertEinstein’stheoryofspecialrelativityortheveryinventionofthedigitalcomputerandartificialneuralnetworksoverwhichtoday’sdebatesrage.ThephilosopherofscienceJohnNortonarguesthatEinstein’stheoryofspecialrelativitywasinspiredbyhisparticipationinareadinggrouponHume’sTreatisearound1902-1903withthemathematicianConradHabichtandphilosopherMauriceSolovine,fromwhichEinsteinobtainedadeepregardforHume’s
empiricism.Inautobiographicalnotesfrom1946,Einsteinwritesofhisdiscoveryoftherelativityofsimultaneity(toaninertialframeofreference)whichundergirdsspecialrelativitythat“thiscentralpointwasdecisivelyfurthered,inmycase,bythereadingofDavidHume’sandErnstMach’sphilosophicalwritings”(quotedinNorton2010).WhilerationalistphilosopherslikeImmanuelKantthoughtthatabsolutesimultaneitywasnecessarilyentailedbyouraprioriconceptionofspacetime,Einsteinreasonedthatifeventhesebedrockconceptswerelearnedfromexperience,thentheremightbeexceptionstotheminextremeconditions,suchaswhenobjectstravelatvelocitiesapproachingthespeedoflight.
Equallymomentousachievementscanbeattributedtoscientistslisteningtothenativistmuse;theneuroscientistGraceLindsayrecountshowtheearlyneuralnetworkpioneersMcCullochandPitts(1943)idolizedtherationalistphilosopherGottfriedLeibniz,whotheorizedthatthemindoperatesoveraninnatelogicalcalculusfromwhichalltruepropositionscouldbemechanicallydeduced(Lindsay2021Ch.3).
McCullochandPitts’ideathatthesecomplexlogicalandmathematicaloperationscouldbecomputedbylargenumbersofsimplecomponentsorganizedintherightkindofnetworkarrangementservedasdirectinspirationforbothJohnvonNeumann(1993)andFrankRosenblatt(1958),whoseworkscanbeseentohaveproducedboththeopposingresearchtraditionsresponsibleforthedigitalmicroprocessorarchitectureanddeepneuralnetworks(DNNs),respectively.
Here,Iarguethatthecurrentincarnationofthenativist-empiricistdebateinartificialintelligencepresentsuswithasimilargoldenopportunity,inwhichwemightattemptoneoftherarestfeatsofintellectualalchemy:theconversionofatimelessphilosophicalriddleintoatestableempiricalquestion.For,ifwecouldapplythedistinctiontothedeeplearningdebatewithoutconfusionorcaricature,thenwecouldsimplybuildsomeartificialagentsaccordingtonativistprinciples,andotherartificialagentsaccordingtoempiricistprinciples,andseewhichonesareultimatelythemostsuccessfulorhuman-like.Specifically,wecanmanuallyprogramthenativistsystemswithinnateabstractknowledge,andendowempiricistsystemswithgeneralcapacitiestolearnabstractknowledgefromsensoryexperience,andcomparetheperformanceofthesystemsonarangeofimportanttasks.Crucially,however,theempiricistsinthiscompetitionmustbeallowedmorerawmaterialsthanMarcus’formalspecificationallows,ifweaimtoholdafairandinformativecompetition.
Ifwecouldaccomplishthisconversion,philosophersandcomputerscientistswouldbothreaptherewards.Onthephilosophyside,empiricistshavefrequentlybeenaccusedofappealingtomagicatcriticalpointsintheirtheoriesofrationalcognition.LockeandHume,forexampleoftenassertedthatthemindperformssomeoperationwhichallowsittoextractsomeparticularbitofabstractknowledgefromexperiencebut—giventhescantunderstandingofthebrain’soperationsavailableatthetime—theycouldnotexplainhow.Carefullyexaminingthedetailsofrecentdeeplearningachievementsmightredeemsomeofthelargestsuchpromissorynotes,byshowinghowphysicalsystemsbuiltaccordingtoempiricistprinciplescanactuallyperformtheseoperations.Indexingthephilosophicaldebatetothesesystemscanfurtherimproveitsclarity;wherephilosophicalslogansarevagueandsubjecttointerpretation,computationalmodelsareprecise,withalltheirassumptionsexposedforphilosophicalscrutinyandempiricalvalidation.Wheresuccessful,theplausibilityoftheempiricistapproachtorationalcognitionsubstantiallyincreasesasaresult.Ofthebenefitstocomputerscience,philosophershavethoughtlongandhardaboutthechallengeofprovidingacompleteapproachtothehumanmindthatisconsistentwithempiricistconstraints,includinghowthemind’svariouscomponentsmightinteractandscaleuptothehighestformsofabstractknowledgeandrationalcognition.
Deeplearningisonlynowreachingfortheseheightsinitsmodelingambitions(e.g.GoyalandBengio2020),andsotheremaystillyetbeinsightstominefromthehistoryofempiricistphilosophythatcanbetransmutedintothenextengineeringinnovations.
Totheseends,Iheremountaninterdisciplinaryinvestigationintotheprospectsandimplicationsofrecentachievementsindeeplearning,combininginsightsfrombothcomputerscienceandphilosophy.Doingsocanbothanimatecurrentengineeringresearchwiththewarmthandwisdomofaclassicphilosophicaldebate,whilstsimultaneouslyrenderingthetermsofthatdebateclearerthantheyhaveyetbeeninitslonganddistinguishedhistory.Nevertheless,Iknowthatsuchaninterdisciplinaryprojectisbesetwithitsowndistinctiverisk.RichardEvans—aninterdisciplinaryresearcheratDeepMindwhohassoughttocreatemorepowerfuldeeplearningsystemsbyaugmentingthemwithlogicalmaximsthatheextractsfromKant’sCritiqueofPureReason(includingKant’saforementionedmaximofsimultaneity)—hasissuedasalutarywarningforprojectsembarkingundersuchambitions:
Thisisaninterdisciplinaryprojectandassuchisinever-presentdangeroffallingbetweentwostools,
neitherphilosophicallyfaithfultoKant’sintentionsnorcontributingmeaningfullytoAIresearch.Kanthimselfprovides:‘thewarningnottocarryonatthesametimetwojobswhichareverydistinctinthewaytheyaretobehandled,foreachofwhichaspecialtalentisperhapsrequired,andthecombinationofwhichinonepersonproducesonlybunglers.’[AK4:388]Thedangerwithaninterdisciplinaryproject,partAIandpartphilosophy,isthatbothpotentialaudiencesareunsatis?ed.(Evans2020)
WemusttakeEvans’s(andKant’s)warningtoheart.Yet,wemustalsoacknowledgethat,inpartbecausedeeplearningisimplicatedinthenature-nurturedistinction,philosophersareparticularlysuitedtoundertaketheproject.Whateverourotherbungles,wehaveexperiencetendingtothisparticularfire.Toproceed,however,wemustdiscardstoolsaltogether.Wewillbebetterabletogaugethecurrentandfutureachievementsofdeeplearningbyinsteadbuildingamoreaccommodatingbench,withampleroomforaspectrumofdistinctivebackgroundsandexpertise.Giventheintensityofthecurrentdiscussionamongsttheoristsgrapplingwithdeeplearning’spotential,themostproductivewayforwardinvolvesloweringthedebate’stemperatureuntilthesmokeclears,andinvitingtheoristsfromavarietyofbackgroundswithdistinctiveexpertiseandastakeindeeplearning’simplicationstopatientlyworkthroughthedetailstogether.
Howtosimmerthingsdown:FromFormsandslatestostylesoflearning
Thankstorigorousinvestigationinseveraldisciplines,todayweknowthatnearlyallknowledgeoriginatesfromacombinationofbothinnateandexperientialfactors.Bothradicalnativismandradicalempiricismare,inshort,false.Despitethis,morenuancedexpositionsofthedistinctionbetweenempiricismandnativismremaintheexceptionandhavebeenalmostentirelyabsentfromdiscussionsoverdeeplearning.9Withoutabetterwaytounderstandthesubstanceofthedistinction,therecognitionofthisecumenicaloutcomecarries,onbothsides,thethreatofobliteration.ThismaybewhyLockeandHume’se
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年軋輥柱塞項目可行性研究報告
- 湘西苗族調查報告
- 公園調研報告總結
- 人體體質測試器材項目可行性研究報告
- LED燈具項目可行性報告
- 《解決問題的策略-從條件出發(fā)》(教學設計)-2024-2025學年三年級上冊數學蘇教版
- 2025年度布料行業(yè)國際市場開拓合同
- 2025年度全國重點工程裝車承包合同示范文本
- 2025年中國電氣裝備電線電纜行業(yè)市場發(fā)展現狀及投資方向研究報告
- 2025年度泵車租賃與能源管理服務合同
- 《對折剪紙》課件
- 《魔方知識普及》課件
- 東芝授權委托書標準版
- 2023施工項目部標準化工作手冊
- 中小學幼兒園中班下冊點點回家公開課教案教學設計課件案例測試練習卷題
- 中型轎車的盤式制動器的設計
- 低血糖急救護理課件
- 陰道鏡檢查臨床醫(yī)學知識及操作方法講解培訓PPT
- 建設工程前期工作咨詢費收費計算表
- 行為矯正技術-課件
- 八年級物理下冊《實驗題》專項練習題及答案(人教版)
評論
0/150
提交評論