版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
EmbeddedDeepLearninginSpace:ArtificialIntelligencewithQormino?
Abstract
ArtificialIntelligence(AI)algorithmsareknowntobehighlydemandingintermsofcomputingresources.Thankstotheincreaseofcomputationalpowerofthelatestprocessingdevices,AIisalsobecomingpopularfortheSpaceindustryforvariousapplicationssuchasOn-boarddataprocessingforobservationsatellites,automatedguidanceofSpacecrafts,On-boarddecisionforcollisionprevention,Communicationsatellites,Fusionofdatasourcesforbetterpredictability,…
Untilrecently,Spaceindustrywasfacingthechallengetogetaccesstostate-of-the-artprocessingcomponentsthatwouldcomplywithSpacerequirements,i.e.highreliability,robustness,andradiationtolerance.
LedbytheGrenobleUniversitySpaceCentre(CSUG),theQlevErSatprojectleveragesthehighcomputingcapabilitiesofQorminoQLS1046-SpaceradiationtolerantprocessingmodulestorunAIalgorithmson-board,togetherwiththehighresolutionoftheimagestakenbytheEmeraldsensor.
ThiswhitepaperfirstpresentsthegeneralperformancesandfunctionalityoftheQLS1046-Spaceprocessor.Then,themainresultsfromthosebenchmarkingactivitiesaregiven,todemonstratethefeasibilitytouseQLS1046-SpacetorunembeddedAIinSpace.
Introduction
ArtificialIntelligence(AI)algorithmsareknowntobehighlydemandingintermsofcomputingresources.Thankstotheincreaseofcomputationalpowerofthelatestprocessingdevices,AIisbecomingpopularforgroundapplications.AInowcompeteswithtraditionaldataprocessinginanumberofapplications,suchasfacerecognition,autonomousdriving,orrobots.
TheSpaceindustrycanalsobenefitfromAIinvariousapplications:
On-boarddataprocessingforearlywarningstosituations,
Observationandmeteorologicalsatellites,whereon-boardprocessingallowstosendonlyrelevantandpre-processeddatatotheground,reducingdownlinkbandwidthrequirements,
AIcanimproveperformanceinautomatedguidanceofSpacecraftsincriticalmaneuverssuchasdockingorlanding,
On-boarddecisionallowsbettercollisionpreventionthankstoearlyreaction,andofferspossibilitiesofself-healthmonitoringandultimatelyautonomousself-reconfiguration,
Communicationsatellitescanbenefitfromsmartdataroutingandoptimizedantennapointingbasedonactualtrafficandweatherconditionstoincreasedatarateandminimizepowerconsumption,
Fusionofdatasourcesfromvariouskindofsensors,allowingtoseewhatisnotvisibletothe“humaneye”,includingon-boardanalysisoflargedatasetsindeepSpaceandSciencemissions.
Untilrecently,despitethiswiderangeofnewpossibilities,Spaceindustrywasfacingthechallengetogetaccesstostate-of-the-artprocessingcomponentsthatwouldcomplywithSpacerequirements,i.e.highreliability,robustness,andradiationtolerance.
LedbytheGrenobleUniversitySpaceCentre(CSUG),theQlevErSatisdevelopingananosatelliteusingartificialintelligencealgorithmstoobservetheEarthandmeetsocialchallengessuchasobservationofillegaldeforestation,monitoringofCO2emissionsorevaluationofdamagesafteranaturaldisaster.
Figure1:QlevErSatNanosatellite
ThissmartsatellitewillembedanEmerald16MPimagesensorandaQormino?QLS1046-Spaceprocessingmodule,bothnewradiation-tolerantandSpace-qualifiedcomponentsfromTeledynee2v.TheprojectleveragesthehighcomputingcapabilitiesofQLS1046-SpacetobeabletoruntheAIalgorithmson-board,togetherwiththehighresolutionoftheimagestakenbytheEmeraldsensor.
Figure3:Qormino?QLS1046-4GB Figure2:EMERALDSensor
Intheframeofthisproject,apartofthefeasibilitystudyaimedatverifyingthecomputingcapabilityoftheQorminoQLS1046-SpaceforAIalgorithms.ThiswhitepaperfirstpresentsthegeneralperformanceandfunctionalityofQLS1046-Space.Then,mainresultsobtainedinthosebenchmarkingactivitiesaregiven,demonstratingthefeasibilitytouseQLS1046-SpacetorunAIinSpace.
GeneralperformanceandfunctionalityofQormino?QLS1046-Space
QorminoisalineofprocessingmodulesfromTeledynee2vdedicatedtoSpaceandHigh-reliabilityapplications.ThosemodulescombineGHz-classmulticoreprocessors,withhighspeedDDR4memories,incompact44x26mmdimensions.Theycomeina0.8mmBGApackage,andaredesignedtorespondtoSWaP(Size,WeightandPower)constraints.Withbuilt-inDDR4buslayoutand“building-block”approach,designisfacilitatedwhileguaranteeingahighperformance.
QLS1046-SpaceistheQorminoversiondedicatedtoSpace.ItembedsaQuad-CoreArm?Cortex?-A72Microprocessorrunningupto1.8GHz,withECC-protectedL1andL2cachememoriesforreliablebehaviour.Itfeaturesarichsetofperipherals,includingintegratedpacketprocessingacceleration,highspeedseriallinkssupporting10GbEthernet,PCIe?Gen3,SATA3.0andUSB,aswellasanumberofgeneralpurposeinterfacessuchasSPI,I2C,andUART.Thecurrentversionintegrates4GBofDDR4withtransferspeedupto2.4GT/s,andaversionwith8GBisalsotargeted.
Figure4:ArchitectureofQLS1046-4GB-Space
Apartfromthepureperformanceaspect,thereasonforselectingthisdeviceisthatitisSpace-compliant.Boththeprocessorandthememoryareradiationtolerant:
SELfreeuptomorethan60MeV.cm2/mg
KnownSEU/SEFIcross-sectionsuptomorethan60MeV.cm2/mg
TID:100krad(Si)
Inaddition,QLS1046-Spaceanditscomponentsarequalified,manufactured,andscreenedfollowingNASAorECSSstandards.
Benchmark&Results
BenchmarkingactivitieswereperformedtoverifyinpracticethecomputingcapabilityofQLS1046-SpacetorunAIalgorithmsforSpaceapplications.ThefocusismainlyonAIforimageprocessing,sincetheQlevErSatprojecttargetsearthobservationusecases.Inthisstudy,onlyneuralnetworkswithdeeplearninghavebeentested.Classicalmachinelearningusuallyrequireslesscomputingresources,thusitwouldbeexpectedtogetevenbetterresultsinmachinelearning.
Inthisstudy,theperformancesofQLS1046-Spacewereevaluatedonthreedifferentaxes:
ThepurecomputingperformanceswereevaluatedintermsofGFLOPS(GigaFloatingPointOperationsPerSecond),sincethisisthetypicalwayofevaluatingthecomputingperformanceofadeviceinAIapplications.
Aninferencebenchmarkwasperformedtoverifythecapabilityofthedevicetoexecuteneuralnetworks.Severalclassicalneutralnetworkarchitectureshavebeentested.
Trainingperformancewasbrieflyassessed,toevaluatethepossibilityofapplyinglearningorfine-tuningonQLS1046-Space.
Benchmarksetup
TheperformanceassessmentwasrealizedwithaQLS1046-Spacedevelopmentkit,whichhasanumberofavailableinterfaces.TheoperatingsystemusedthroughoutthebenchmarkwasLinux(Ubuntu18.04).TheQSL1046-Spacedeviceinsidethedevelopmentkithad4GBofintegratedDDR4memory.Theversionwith8GBofDDR4memorywouldhavebeenmoreefficienttoexecuteAI,butitwasnotavailableatthetimeofthetesting.Inaddition,theprocessorwasrunningat1.6GHz,insteadof1.8GHzmaximumfrequency.ThismeansthattheresultspresentedinthiswhitepaperaresomewhatlimitedbytheamountofDDR4memoryavailableandtherunningfrequencyoftheprocessor.
Figure5:QLS1046-SpaceDevelopmentKit
Insomeofthefollowingbenchmarkresults,aregularcomputerwasusedasabasisforcomparisontorateQLS1046-Spaceperformance.ThiscomputerhadanIntel?Core?i7-9750Hprocessorrunningat
2.6GHzand32GBofDDR4.ItwasrunningLinux.ItisconsideredasagoodcomputertoperformAI,whichiswhyitisaconvenientreferenceinthefollowing.
Benchmarkresults
PerformancesofQLS1046-Spacewereevaluatedonthefollowingthreeaxes:
Figure6:Benchmarks
Purecomputingperformance
Forthepurecomputingperformanceevaluation,thebenchmark[1]wasused,whichconsistsinasmallandsimpletestsoftware.Intheresults,theperformanceofQLS1046-SpaceiscomparedtothatofthecomputerwiththeIntel?Core?i7-9750Hprocessor.Itshouldbenoticedthattheexecutionofthesoftwaredoesnottakeadvantagethehardwareacceleratorsoftheprocessors.ThisexplainsinparticularwhytheGFLOPSnumbersobtainedherearelowerthatwhatcanbefoundintheliteratureforthoseprocessors.Figure7presentsthepureresultsinGFLOPStocomparebothtargets.Figure8comparespowerefficiencysincethisisakeytopicinSpaceapplications.
Figure7:Summaryofthecomputingperformancecomparison.
Figure8:Powerefficiencyinquadcoreoperation.
Calculatedfromthermalpowercharacteristicsofbothdevices,45W@100°Cforthei7(Table5-2of[2]),14.6W@105°CforQLS1046-Space(Table8of[3]).
Itisobservedthatthegapbetweenthetwodevicesdependsonthenumberofcoresused,andwithhighernumberofcoresthedifferenceinperformancereduces.ThoseresultshighlightthatQLS1046-
Spaceoffersabouthalfofthecomputingcapabilitiesofthei7inthequad-coreconfiguration,whichisknowntobeagoodprocessortoperformAIonground.Hence,QLS1046-SpaceoffersafairamountofcomputingperformancetoperformAIinSpace.Inaddition,QLS1046-SpaceexhibitshigherpowerefficiencymakingitwellsuitedforSpacesystems.
Deeplearninginferencebenchmark
Inthisbenchmark,testsareperformedtoevaluatetheperformanceofQLS1046-Spaceininference,meaningwhenthedeviceusesaneuralnetworktoprocessanimage.Onlyclassicalneuralnetworksaretestedinthestudy,firstwithArmComputeLibrary[5],thenAI-Benchmark[4]onTensorFlow[7],andConvNet[6]onPyTorch[8].ItshouldbenoticedthatthetwomostpopularlibrariesusedforIAareTensorFlowandPyTorchproposedbyGoogleandFacebookrespectively,withbothlibrariessupportedbyArm[9].Thosenetworksarepre-trainedtoidentifyobjectsinpicturesandarewidelyusedintheexistingobjectclassifierssuchasr-cnn,fast-rcnn,fasterr-cnn[10]orCenterNet[11].However,TensorFlowandPyTorchlibrariesareevolvingveryquickly,andthisisthereasonforevaluatingfirsttheperformancewithArmComputeLibrary,whichisconsideredmorestable.
ArmComputeLibrary
Inthisbenchmark,ArmComputeLibrary[5]isusedtorundifferentclassicalneuralnetworks.TheresultsobtainedonQLS1046-SpaceareshownintheTable1:
Network
Executiontime[ms]
Numberofoperationsforaninference[MFLOP]
Computingperformances[GFLOPS]
Singlecore
Quadcore
Single
core
Quadcore
Alexnet
153
74
727
5
10
Googlenet
286
109
1500
5
14
Inceptionv3
848
314
6000
7
19
Inceptionv4
1870
655
13000
7
20
Mobilenet
118
44
570
5
13
Resnet50
501
206
4000
8
19
Squeezenet
145
64
360
2
6
Vgg16
1090
418
16000
15
38
Yolov3
6540
2500
66000
10
26
Table1:PerformanceofQLS1046-SpacewithArmcomputelibrary.
Thoseresultsconfirmthatitispossibletoperformon-boardimageclassificationusingQLS1046-Space,withthiskindofcommonclassifiers,andwithreasonableexecutiontime.ThoseresultsareespeciallyinterestingconsideringthatArmcomputelibraryisoneofthemajorframeworksforAI.
AI-Benchmark
AI-Benchmark[4]instantiatesbackbonesintheTensorFlowformat,whichareverycommonneuralnetworksoriginallycreatedforimageclassification.TheresultsofthebenchmarkfordifferentneuralnetworksaregivenintheTable2:
Backbone
Picture
size
Execution
time[ms]
Variability
[ms]
Description
VGG16[9]
224x224
1320
7
NetworktrainedonImageNet[12]to
classify1000objects.
VGG19[9]
512x512
13562
144
NetworktrainedonImageNet[12]to
classify1000objects.
ResNet-V2-50
346x346
868
5
Classifierbasedonresidualneural
network[13]
ResNet-V2-152
256x256
1538
18
Classifierbasedonresidualneural
network
Table2:AI-BenchmarkresultsonQLS1046-Space.
TheresultsshowthatQLS1046-Spaceallowstoperformanon-boardimageclassificationwithclassicalneuralnetworksinabout1s.ThisimpliesanoptimizedmemorymanagementwiththeuseofFP16type,andwithpicturesizesuitablewiththememoryavailableof4GB.ItisnoticedthatVGG19[9]isaround10timeslongertoexecutethanothertests,whichmaybeduetocachememoriesconfigurationandDDR4sizelimitation.
Basedontheresults,QLS1046-Spaceobtainsascoreof103.Neuralnetworksareknowntorequirelargeamountsofmemory,hencetheperformanceobtainedhereislimitedbytheDDR4sizeof4GBonthetestedversion.Muchhigherrankingisexpectedwithan8GBversion.
Convnet
Inthisbenchmark,ConvNet[6]onPyTorchistestedonQLS1046-Space.PytorchtendstobeusedmoreandmoreoftenoverTensorFlow.PyTorchwasoriginallymorecomplextousebutwasmoreflexible.FromPyTorchversion1.8,animportantreductionincomplexityisexpectedtobenefittoQLS1046-Space.ItshouldalsobenoticedthatPyTorchisnowcanhandletoolssuchasSLURM[14]onpytorch-lightning[15].ConvnetbenchmarkresultsonPyTorcharegivenintheTable3:
Network
Executiontime[ms]
QLS1046-Space@1.6GHz
Intel?Core?i7-9750H@2.6GHz
Alexnet
187
1.72
VGG11
764
4.28
ResNet50
578
7.29
Squeezenet1_0
328
2.28
Densenet121
1283
17.93
Mobilenet_v2
2337
6.38
Shufflenet
1278
8.49
Unet
1263
4.98
Table3:ConvnetresultsonQLS1046-Space.
Thebenchmarkshowsthatthei7isperformingmuchfasterthanQLS1046-Space,whichislimitedagainbythesizeofmemoryavailable.Despitethegapinperformance,itisstillconsideredthattheperformancelevelofferedbyQLS1046-Spaceisacceptabletoimplementon-boardAIprocessing.
Deeplearningtrainingperformance
TrainingperformanceusingQLS1046-SpacewasquicklytestedonConvnetwithTensorFlow.Itwasnotextensivelytestedsincemostup-to-datebackpropagation[16]benchmarksrequireatleast8GBofRAMmemory.Table4showsthecomparisonofthetrainingtimeforonesampleonResNet50betweenQLS1046-SpaceandtheIntel?i7.
Network
Trainingtimeforonesample[ms]
OnQLS1046-Space
OnIntel?Core?i7-9750H
ResNet50
3782
20
Table4:Comparisonoftrainingperformance.
ThisresultclearlyshowsthepenaltyofthelackofRAMmemoryonthecurrentversionofQLS1046-Spacefortrainingontraditionalimageclassifiers.Itshouldbenoticedthatacompletetrainingusuallyrequireshundredsofsamples.Thisresulthastobemitigatedduetothefactthatimageclassifiersareknowntobehighlydemandingincomputingresources.Sinceitwillbetime-consumingtoperformacompletetrainingonQLS1046-Space,analternativethatcanbeconsideredistoperformfine-tuning
[17]on-board.
TrainingsmallconvolutionalneuralnetworksforsimpledetectionusecasesseemsfeasiblewithQLS1046-Space,aswellasdeeplearningforprocessingtime-seriesor1-Dsignals.Intermsoftrainingcapabilitiesonimages,QLS1046-Spacewouldbemoreefficientinclassicalmachinelearning,butthosemodelsaremorecomplextobuild.
Discussion
QLS1046-SpaceoffersadecentamountacomputingcapabilityallowingtorundeeplearningAIforimageprocessinginSpace.Thedeviceisnotaspowerfulastailored-madesolutionsthatareavailableforAIinferenceingroundapplications,butitisthemostpowerfulSpace-qualifiedCPUavailableonthemarket.Intermsofpurecomputingcapabilities,itoffersperformanceinthesameorderofmagnitudeasanIntel?Core?i7-9750H.FromtheAIperformancepointofview,themaindrawbackofthecurrentversionisthe4GBmemory,whichrequiresanoptimizedmemorymanagementtorunAIforimageprocessing.Onnextversionswith8GBDDR4memoryormore,AIperformancewouldbesignificantlyincreased,andwouldreducetheburdenofoptimizedmemorymanagement.
PerformanceobtainedinthepreviousbenchmarkswasevaluatedwithclassicaldeepneuralnetworkswithouttakingadvantageofthespecificQLS1046-Spacearchitecture.DifferentAItopologiesaremoreoptimizedtorunonembeddedtargets,whichwouldbringabetterefficiencyoftheAIrunningonQLS1046-Space.ApartfromAIcomputingperformance,thestudyshowsthatQLS1046-SpaceexhibitsgoodpowerefficiencymakingitwellsuitedforSpacesystemswhereelectricalpowerislimitedandpowerdissipationisanissue.Fromtheelectronicarchitecturepointofview,itmightberelevanttoaddanFPGAasacompanion-chipforQLS1046-Space,inwhichcasetheFPGAcouldtakecareefficientlyofthepre-processing,andQLS1046-Spacewouldthenperformtheheavywork.
Inthisstudy,theprimaryfocuswasondeeplearningAIforimageprocessing,whichisconsideredoneofthemostdemandingapplicationintermsofcomputingresources.Forinstance,processingof1-Dtimeseriesismuchlessdemandingthatimageprocessing.Hence,theoutcomeofthestudyisthatQLS1046-Spacewouldalso
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit3Food and Culture(詞匯短語(yǔ)句式)-2025屆高三人教版英語(yǔ)一輪復(fù)習(xí)闖關(guān)攻略(解析版)
- 2024年度天津市公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師綜合練習(xí)試卷B卷附答案
- 2024年度天津市公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師能力測(cè)試試卷A卷附答案
- 2024年度天津市公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師模擬預(yù)測(cè)參考題庫(kù)及答案
- 2024年度四川省公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師題庫(kù)檢測(cè)試卷B卷附答案
- 2024年度四川省公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師每日一練試卷A卷含答案
- 2025協(xié)議書(shū)怎么解除協(xié)議合同
- 鋼渣處理項(xiàng)目-鋼渣熱悶加工處理生產(chǎn)線可行性研究報(bào)告
- 2024-2025年中國(guó)船用通訊設(shè)備行業(yè)市場(chǎng)運(yùn)營(yíng)現(xiàn)狀及投資規(guī)劃研究報(bào)告
- 地源熱泵中央空調(diào)主機(jī)項(xiàng)目可行性研究報(bào)告申請(qǐng)建議書(shū)
- 建設(shè)工程工程量清單計(jì)價(jià)規(guī)范有表格
- 2023版學(xué)前教育專業(yè)人才需求調(diào)研報(bào)告及人培方案(普招)
- 酒店客房部獎(jiǎng)懲制度
- DB43-T 2927-2024 中醫(yī)護(hù)理門(mén)診建設(shè)與管理規(guī)范
- 北師大版九下《直角三角形邊角關(guān)系》
- 2024年浙江杭州西湖文化旅游投資集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 圍手術(shù)期血糖管理指南
- 國(guó)際經(jīng)濟(jì)學(xué)中文版(克魯格曼教材)課件
- 管理方案日間照料中心
- 2024福建省能化集團(tuán)下屬古雷熱電有限責(zé)任公司社會(huì)招聘筆試參考題庫(kù)附帶答案詳解
- 煤礦安全生產(chǎn)管理人員逢查必考題庫(kù)(500題)
評(píng)論
0/150
提交評(píng)論