版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆天津市河西區(qū)下學期高三下學期聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域為()A.或 B.或C. D.2.已知,,則的大小關系為()A. B. C. D.3.已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.在中,分別為所對的邊,若函數(shù)有極值點,則的范圍是()A. B.C. D.5.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1806.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.7.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數(shù)學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為()A. B. C. D.8.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.9.設,,,則、、的大小關系為()A. B. C. D.10.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.211.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.12.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結(jié)對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現(xiàn)選出3位老教師負責指導5位新入聘教師,則不同的師徒結(jié)對方式共有()種.A.360 B.240 C.150 D.120二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,且恒成立,則的值為____________.14.某高校組織學生辯論賽,六位評委為選手成績打出分數(shù)的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為______.15.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了”.丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是__________.16.設變量,,滿足約束條件,則目標函數(shù)的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.18.(12分)已知函數(shù).(1)若,解關于的不等式;(2)若當時,恒成立,求實數(shù)的取值范圍.19.(12分)已知.(1)已知關于的不等式有實數(shù)解,求的取值范圍;(2)求不等式的解集.20.(12分)已知矩陣不存在逆矩陣,且非零特低值對應的一個特征向量,求的值.21.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.22.(10分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)偶次根式被開方數(shù)非負可得出關于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域為或.故選:A.【點睛】本題考查具體函數(shù)定義域的求解,考查計算能力,屬于基礎題.2、D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最?。欢蓪?shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.3、C【解析】
根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關鍵.4、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數(shù)的極值.【方法點晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個不等實根,從而可得.5、A【解析】
因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.6、A【解析】
解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關系,結(jié)合數(shù)軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學運算能力.7、D【解析】
設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結(jié)合題中的結(jié)論即可求出該圓柱的內(nèi)切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內(nèi)切球的體積是圓柱體積的,所以所求圓柱內(nèi)切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.8、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.9、D【解析】
因為,,所以且在上單調(diào)遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數(shù)函數(shù)的單調(diào)性比較指對數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.10、C【解析】
由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于中檔題.11、C【解析】
利用線線、線面、面面相應的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質(zhì)定理,是一道基礎題.12、C【解析】
可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結(jié)對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
易得,所以是等差數(shù)列,再利用等差數(shù)列的通項公式計算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項,3為公差的等差數(shù)列,故,所以.故答案為:【點睛】本題考查由遞推數(shù)列求數(shù)列中的某項,考查學生等價轉(zhuǎn)化的能力,是一道容易題.14、【解析】
先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個數(shù)為83,85,87,95,且這四個數(shù)的平均數(shù),這四個數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點睛】本題主要考查莖葉圖的識別和統(tǒng)計量的計算,側(cè)重考查數(shù)據(jù)分析和數(shù)學運算的核心素養(yǎng).15、丙【解析】若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,可知獲獎的歌手是丙.考點:反證法在推理中的應用.16、7【解析】作出不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,其中A(2,1),B(1,2),C(4,5)設z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經(jīng)過點A時,目標函數(shù)z達到最小值∴z最小值=F(2,1)=7三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設橢圓方程為(),則,,,所以曲線C的方程為.(2)設直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關系從而判斷軌跡,直線與曲線相交一般聯(lián)立設而不求韋達定理進行求解即可,屬于一般性題目.18、(1)(2)【解析】
(1)利用零點分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當時,,由此可知,的解集為(2)當時,的最小值為和中的最小值,其中,.所以恒成立.當時,,且,不恒成立,不符合題意.當時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點睛】本小題主要考查絕對值不等式的解法,考查根據(jù)絕對值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學思想方法,屬于中檔題.19、(1);(2).【解析】
(1)依據(jù)能成立問題知,,然后利用絕對值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點分段法解含有兩個絕對值的不等式即可?!驹斀狻恳驗椴坏仁接袑崝?shù)解,所以因為,所以故。①當時,,所以,故②當時,,所以,故③當時,,所以,故綜上,原不等式的解集為?!军c睛】本題主要考查不等式有解問題的解法以及含有兩個絕對值的不等式問題的解法,意在考查零點分段法、絕對值三角不等式和轉(zhuǎn)化思想、分類討論思想的應用。20、【解析】
由不存在逆矩陣,可得,再利用特征多項式求出特征值3,0,,利用矩陣乘法運算即可.【詳解】因為不存在逆矩陣,,所以.矩陣的特征多項式為,令,則或,所以,即,所以,所以【點睛】本題考查矩陣的乘法及特征值、特征向量有關的問題,考查學生的運算能力,是一道容易題.21、(Ⅰ);(Ⅱ),證明見解析.【解析】
(Ⅰ)根據(jù)題意列出關于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設點,,點,,易求直線的方程為:,令得,,同理可得,所以,聯(lián)立直線與橢圓方程,利用韋達定理代入上式,化簡即可得到.【詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設點,,點,,聯(lián)立方程,消去得:,,①,點,,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【點睛】本題主要考查直線與橢圓的位置關系、定值問題的求解;關鍵是能夠通過直線與橢圓聯(lián)立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題.22、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學生畢業(yè)典禮活動策劃方案-大學畢業(yè)典禮活動策劃方案5篇
- 進入高三后的勵志5分鐘演講稿大全10篇
- 私立幼兒園教師的上半年工作總結(jié)
- 保障性住房項目建設方案
- 傳承冬奧會精神主題作文10篇
- 四川省宜賓市(2024年-2025年小學六年級語文)統(tǒng)編版開學考試((上下)學期)試卷及答案
- 實習工作自我總結(jié)10篇
- 四川省涼山彝族自治州(2024年-2025年小學六年級語文)統(tǒng)編版隨堂測試(下學期)試卷及答案
- 四川省內(nèi)江市(2024年-2025年小學六年級語文)部編版能力評測(下學期)試卷及答案
- 建議書作文400字集合七篇
- 《英語演講》課件-Task 2 Case Studies-1of English Speech and Debate
- 2024年度石料供應框架協(xié)議
- 2024年中國PVC鞋底料市場調(diào)查研究報告
- 臥式橢圓封頭儲罐液位體積對照表
- Unit 3 The Internet Reading for writing 課件高中英語人教版(2019)必修第二冊 -
- ICD-10疾病編碼完整版
- 幼兒園大班語言活動《新年禮物》課件
- 基于STM32的智能溫控風扇設計
- 田字格模版內(nèi)容
- 股骨髁上骨折診治(ppt)課件
- 高頻焊接操作技術規(guī)范
評論
0/150
提交評論