版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年河南省鄭州一中學(xué)汝州實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.的相反數(shù)是()A.2 B.﹣2 C.4 D.﹣2.拋物線y=mx2﹣8x﹣8和x軸有交點(diǎn),則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠03.若關(guān)于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a(chǎn)<3B.a(chǎn)>3C.a(chǎn)<﹣3D.a(chǎn)>﹣34.如圖1,點(diǎn)O為正六邊形對(duì)角線的交點(diǎn),機(jī)器人置于該正六邊形的某頂點(diǎn)處,柱柱同學(xué)操控機(jī)器人以每秒1個(gè)單位長(zhǎng)度的速度在圖1中給出線段路徑上運(yùn)行,柱柱同學(xué)將機(jī)器人運(yùn)行時(shí)間設(shè)為t秒,機(jī)器人到點(diǎn)A的距離設(shè)為y,得到函數(shù)圖象如圖2,通過(guò)觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長(zhǎng)為1;②當(dāng)t=3時(shí),機(jī)器人一定位于點(diǎn)O;③機(jī)器人一定經(jīng)過(guò)點(diǎn)D;④機(jī)器人一定經(jīng)過(guò)點(diǎn)E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④5.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.86.如圖,在△ABC中,以點(diǎn)B為圓心,以BA長(zhǎng)為半徑畫弧交邊BC于點(diǎn)D,連接AD.若∠B=40°,∠C=36°,則∠DAC的度數(shù)是()A.70° B.44° C.34° D.24°7.如圖,點(diǎn)P是以O(shè)為圓心,AB為直徑的半圓上的動(dòng)點(diǎn),AB=2,設(shè)弦AP的長(zhǎng)為x,△APO的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是A.B.C.D.8.如圖,已知,為反比例函數(shù)圖象上的兩點(diǎn),動(dòng)點(diǎn)在軸正半軸上運(yùn)動(dòng),當(dāng)線段與線段之差達(dá)到最大時(shí),點(diǎn)的坐標(biāo)是()A. B. C. D.9.如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長(zhǎng)為12,則PD+PE+PF=()A.12 B.8 C.4 D.310.在同一直角坐標(biāo)系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.與是位似圖形,且對(duì)應(yīng)面積比為4:9,則與的位似比為______.12.同時(shí)拋擲兩枚質(zhì)地均勻的骰子,則事件“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的概率是.13.如圖,Rt△ABC中,∠C=90°,AB=10,,則AC的長(zhǎng)為_______.14.已知圓錐的底面半徑為40cm,母線長(zhǎng)為90cm,則它的側(cè)面展開圖的圓心角為_______.15.一次函數(shù)y=kx+b的圖像如圖所示,則當(dāng)kx+b>0時(shí),x的取值范圍為___________.16.對(duì)角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形17.已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,則另一組新數(shù)據(jù)x1+1,x2+2,x3+3,x4+4,x5+5的平均數(shù)是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點(diǎn)D為拋物線的頂點(diǎn),連接CD,點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過(guò)點(diǎn)P作PE∥y軸交線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE長(zhǎng)為d,寫出d與t的關(guān)系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).19.(5分)如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長(zhǎng).20.(8分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長(zhǎng);(3)求sin∠EOB的值.21.(10分)如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.求證:AB=DC;試判斷△OEF的形狀,并說(shuō)明理由.22.(10分)均衡化驗(yàn)收以來(lái),樂(lè)陵每個(gè)學(xué)校都高樓林立,校園環(huán)境美如畫,軟件、硬件等設(shè)施齊全,小明想要測(cè)量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走6米到達(dá)A處,測(cè)得樹頂端E的仰角為30°,他又繼續(xù)走下臺(tái)階到達(dá)C處,測(cè)得樹的頂端的仰角是60°,再繼續(xù)向前走到大樹底D處,測(cè)得食堂樓頂N的仰角為45°,已如A點(diǎn)離地面的高度AB=4米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.(1)求樹DE的高度;(2)求食堂MN的高度.23.(12分)如圖所示,一堤壩的坡角,坡面長(zhǎng)度米(圖為橫截面),為了使堤壩更加牢固,一施工隊(duì)欲改變堤壩的坡面,使得坡面的坡角,則此時(shí)應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到米)(參考數(shù)據(jù):,,)24.(14分)為響應(yīng)市政府“創(chuàng)建國(guó)家森林城市”的號(hào)召,某小區(qū)計(jì)劃購(gòu)進(jìn)A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.若購(gòu)進(jìn)A、B兩種樹苗剛好用去1220元,問(wèn)購(gòu)進(jìn)A、B兩種樹苗各多少棵?若購(gòu)買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】分析:根據(jù)只有符號(hào)不同的兩個(gè)數(shù)是互為相反數(shù)解答即可.詳解:的相反數(shù)是,即2.故選A.點(diǎn)睛:本題考查了相反數(shù)的定義,解答本題的關(guān)鍵是熟練掌握相反數(shù)的定義,正數(shù)的相反數(shù)是負(fù)數(shù),0的相反數(shù)是0,負(fù)數(shù)的相反數(shù)是正數(shù).2、C【解析】
根據(jù)二次函數(shù)的定義及拋物線與x軸有交點(diǎn),即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點(diǎn),,解得:且.故選.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)的定義以及解一元一次不等式組,牢記“當(dāng)時(shí),拋物線與x軸有交點(diǎn)是解題的關(guān)鍵.3、B【解析】試題分析:當(dāng)x=0時(shí),y=-5;當(dāng)x=1時(shí),y=a-1,函數(shù)與x軸在0和1之間有一個(gè)交點(diǎn),則a-1>0,解得:a>1.考點(diǎn):一元二次方程與函數(shù)4、C【解析】
根據(jù)圖象起始位置猜想點(diǎn)B或F為起點(diǎn),則可以判斷①正確,④錯(cuò)誤.結(jié)合圖象判斷3≤t≤4圖象的對(duì)稱性可以判斷②正確.結(jié)合圖象易得③正確.【詳解】解:由圖象可知,機(jī)器人距離點(diǎn)A1個(gè)單位長(zhǎng)度,可能在F或B點(diǎn),則正六邊形邊長(zhǎng)為1.故①正確;觀察圖象t在3-4之間時(shí),圖象具有對(duì)稱性則可知,機(jī)器人在OB或OF上,則當(dāng)t=3時(shí),機(jī)器人距離點(diǎn)A距離為1個(gè)單位長(zhǎng)度,機(jī)器人一定位于點(diǎn)O,故②正確;所有點(diǎn)中,只有點(diǎn)D到A距離為2個(gè)單位,故③正確;因?yàn)闄C(jī)器人可能在F點(diǎn)或B點(diǎn)出發(fā),當(dāng)從B出發(fā)時(shí),不經(jīng)過(guò)點(diǎn)E,故④錯(cuò)誤.故選:C.【點(diǎn)睛】本題為動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象探究題,解答時(shí)要注意動(dòng)點(diǎn)到達(dá)臨界前后時(shí)圖象的變化趨勢(shì).5、D【解析】分析:根據(jù)二元一次方程組的解,直接代入構(gòu)成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據(jù)題意,將代入,得:,①+②,得:m+3n=8,故選D.點(diǎn)睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數(shù)是解題關(guān)鍵,比較簡(jiǎn)單,是??碱}型.6、C【解析】
易得△ABD為等腰三角形,根據(jù)頂角可算出底角,再用三角形外角性質(zhì)可求出∠DAC【詳解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故選C.【點(diǎn)睛】本題考查三角形的角度計(jì)算,熟練掌握三角形外角性質(zhì)是解題的關(guān)鍵.7、A?!窘馕觥咳鐖D,∵根據(jù)三角形面積公式,當(dāng)一邊OA固定時(shí),它邊上的高最大時(shí),三角形面積最大,∴當(dāng)PO⊥AO,即PO為三角形OA邊上的高時(shí),△APO的面積y最大。此時(shí),由AB=2,根據(jù)勾股定理,得弦AP=x=。∴當(dāng)x=時(shí),△APO的面積y最大,最大面積為y=。從而可排除B,D選項(xiàng)。又∵當(dāng)AP=x=1時(shí),△APO為等邊三角形,它的面積y=,∴此時(shí),點(diǎn)(1,)應(yīng)在y=的一半上方,從而可排除C選項(xiàng)。故選A。8、D【解析】
求出AB的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入求出直線AB的解析式,根據(jù)三角形的三邊關(guān)系定理得出在△ABP中,|AP-BP|<AB,延長(zhǎng)AB交x軸于P′,當(dāng)P在P′點(diǎn)時(shí),PA-PB=AB,此時(shí)線段AP與線段BP之差達(dá)到最大,求出直線AB于x軸的交點(diǎn)坐標(biāo)即可.【詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關(guān)系定理得:,延長(zhǎng)交軸于,當(dāng)在點(diǎn)時(shí),,即此時(shí)線段與線段之差達(dá)到最大,設(shè)直線的解析式是,把,的坐標(biāo)代入得:,解得:,直線的解析式是,當(dāng)時(shí),,即,故選D.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理和用待定系數(shù)法求一次函數(shù)的解析式的應(yīng)用,解此題的關(guān)鍵是確定P點(diǎn)的位置,題目比較好,但有一定的難度.9、C【解析】
過(guò)點(diǎn)P作平行四邊形PGBD,EPHC,進(jìn)而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可.【詳解】延長(zhǎng)EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長(zhǎng)為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點(diǎn)睛】本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),等邊三角形的性質(zhì):等邊三角形的三個(gè)內(nèi)角都相等,且都等于60°.10、D【解析】
根據(jù)k值的正負(fù)性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經(jīng)過(guò)象限,即可得出答案.【詳解】解:有兩種情況,當(dāng)k>0是時(shí),一次函數(shù)y=kx-k的圖象經(jīng)過(guò)一、三、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)一、三象限;當(dāng)k<0時(shí),一次函數(shù)y=kx-k的圖象經(jīng)過(guò)一、二、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)二、四象限;根據(jù)選項(xiàng)可知,D選項(xiàng)滿足條件.故選D.【點(diǎn)睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經(jīng)過(guò)的象限是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2:1【解析】
由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對(duì)應(yīng)面積比為4:9,與的相似比為2:1,故答案為:2:1.【點(diǎn)睛】本題考查了位似的相關(guān)知識(shí),位似是相似的特殊形式,位似比等于相似比,其對(duì)應(yīng)的面積比等于相似比的平方.12、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結(jié)果數(shù),其中“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的結(jié)果數(shù)為9,所以“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點(diǎn):列表法與樹狀圖法.13、8【解析】
在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的長(zhǎng).【詳解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案為8.【點(diǎn)睛】此題主要考查銳角三角函數(shù)在直角三形中的應(yīng)用及勾股定理.14、.【解析】
圓錐的底面半徑為40cm,則底面圓的周長(zhǎng)是80πcm,圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng),即側(cè)面展開圖的扇形弧長(zhǎng)是80πcm,母線長(zhǎng)為90cm即側(cè)面展開圖的扇形的半徑長(zhǎng)是90cm.根據(jù)弧長(zhǎng)公式即可計(jì)算.【詳解】根據(jù)弧長(zhǎng)的公式l=得到:
80π=,
解得n=160度.
側(cè)面展開圖的圓心角為160度.故答案為160°.15、x>1【解析】分析:題目要求kx+b>0,即一次函數(shù)的圖像在x軸上方時(shí),觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數(shù)的圖像在x軸上方時(shí),∴x的取值范圍為:x>1.故答案為x>1.點(diǎn)睛:本題考查了一次函數(shù)與一元一次不等式的關(guān)系,主要考查學(xué)生的觀察視圖能力.16、B【解析】
根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對(duì)角線互相平分的四邊形是平行四邊形,對(duì)角線相等的平行四邊形是矩形,∴對(duì)角線相等且互相平分的四邊形一定是矩形.故選B.【點(diǎn)睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡(jiǎn)單,解題的關(guān)鍵是熟記定理.17、1【解析】
根據(jù)平均數(shù)的性質(zhì)知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均數(shù),只要把數(shù)x1、x2、x3、x4、x5的和表示出即可.【詳解】∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,∴x1+x2+x3+x4+x5=15,則新數(shù)據(jù)的平均數(shù)為=1,故答案為:1.【點(diǎn)睛】本題考查的是樣本平均數(shù)的求法.解決本題的關(guān)鍵是用一組數(shù)據(jù)的平均數(shù)表示另一組數(shù)據(jù)的平均數(shù).三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】
(1)由拋物線y=ax2+bx+3與y軸交于點(diǎn)A,可求得點(diǎn)A的坐標(biāo),又OA=OC,可求得點(diǎn)C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長(zhǎng)PE交x軸于點(diǎn)H,現(xiàn)將解析式換為頂點(diǎn)解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點(diǎn)C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當(dāng)x=0時(shí),y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長(zhǎng)PE交x軸于點(diǎn)H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線CD的解析式為y=kx+b,將點(diǎn)C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的相關(guān)知識(shí)點(diǎn).19、(1)見(jiàn)解析(2)6【解析】
(1)利用對(duì)應(yīng)兩角相等,證明兩個(gè)三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長(zhǎng)度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長(zhǎng)度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:20、(1)證明見(jiàn)解析;(2)EM=4;(3)sin∠EOB=.【解析】
(1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對(duì)應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長(zhǎng)度,根據(jù)已知條件推出AM、BM的長(zhǎng)度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長(zhǎng)度;
(3)過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,通過(guò)作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長(zhǎng)度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M(jìn)為OB的中點(diǎn),∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點(diǎn)睛】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握?qǐng)A心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).21、(1)證明略(2)等腰三角形,理由略【解析】
證明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF為等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF為等腰三角形.22、(1)12米;(2)(2+8)米【解析】
(1)設(shè)DE=x,先證明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根據(jù)EF=8求出x的值得到答案;(2)延長(zhǎng)NM交DB延長(zhǎng)線于點(diǎn)P,先分別求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【詳解】(1)如圖,設(shè)DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,解得x=12,∴樹DE的高度為12米;(2)延長(zhǎng)NM交DB延長(zhǎng)線于點(diǎn)P,則AM=BP=6,由(1)知CD=CE=×AC=4,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024股權(quán)抵押借款合同范本格式
- 2024商品買賣合同范本
- 2024年度甲方聘請(qǐng)乙方進(jìn)行市場(chǎng)推廣服務(wù)的合同
- 工廠用工合同協(xié)議書(2024年)
- 2024年建筑勞務(wù)分包主體結(jié)構(gòu)合同
- 個(gè)人質(zhì)押擔(dān)保借款合同模板
- 2024年度金融服務(wù)與投資咨詢合同
- 標(biāo)準(zhǔn)版工程居間合同格式
- 合法勞務(wù)施工協(xié)議書樣式
- 精美施工合同模板
- 第8課 用制度體系保證人民當(dāng)家做主
- 軟件測(cè)試規(guī)范模板
- 足皮膚感染的護(hù)理課件
- 新蘇教版六年級(jí)上冊(cè)科學(xué)全冊(cè)知識(shí)點(diǎn)(精編)
- 采購(gòu)部環(huán)境因素和危險(xiǎn)源識(shí)別
- 應(yīng)用PDCA提高責(zé)任護(hù)士病情知曉率
- 提高急性腦梗死的再灌注率PDCA
- 機(jī)械傷害事故及其預(yù)防課件
- 合理用藥健康教育教學(xué)課件
- 家庭教育重要性-課件
- HCCDP 云遷移認(rèn)證理論題庫(kù)
評(píng)論
0/150
提交評(píng)論