2024 全球6G技術(shù)大會 -10.0D 6G Data Plane_第1頁
2024 全球6G技術(shù)大會 -10.0D 6G Data Plane_第2頁
2024 全球6G技術(shù)大會 -10.0D 6G Data Plane_第3頁
2024 全球6G技術(shù)大會 -10.0D 6G Data Plane_第4頁
2024 全球6G技術(shù)大會 -10.0D 6G Data Plane_第5頁
已閱讀5頁,還剩120頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1/64

Contents

1.Preface 2

2.ProgressofRelevantStandardOrganizations 3

2.1.3GPP 4

2.2.IMT-2030PromotionGroup 5

2.3.NextGAlliance 5

2.4.Hexa-X 6

2.5.6GANA 7

3.6GDataServiceScenariosandRequirementAnalysis 7

3.1.SensingData 7

3.2.AIModelTrainingData 10

3.3.AIModelData 11

3.4.DataServicesBasedonDistributedArchitecture 14

3.5.User-CenteredDataManagementandControl 15

3.6.DatainIntegratedSatellite-TerrestrialCommunicationScenarios 17

3.7.SOEDataAcquisition 18

3.8.Self-GeneratedDataServices 20

3.9.DataBenefits 21

3.10.Summaryof6GDataRequirements 23

4.DefinitionandFrameworkofthe6GDataPlane 24

4.1.Definition 24

4.2.NecessityoftheDataPlane 26

4.3.6GDataPlaneFramework 27

5.KeyTechnologiesof6GDataPlane 34

5.1.DataBearerandTransmissionProtocol 34

5.2.AirInterfaceDataPlane 36

5.3.CoreNetworkDataPlaneFunctionsandArchitecture 39

5.4.CoreNetworkDataPlaneTransmissionProtocol 40

5.5.AIModelDataCompressionTechnology 42

5.6.DistributedDataTechnology 44

5.7.ServiceInterfaceTechnologyBasedonSemanticGraph 46

5.8.CoordinationbetweenDataServicesandOtherServices 52

6.DataPlanePrototype 54

6.1.DataPlanePrototype1 54

6.2.DataPlanePrototype2 55

7.SummaryandOutlook 57

8.References 59

9.Abbreviations 61

10.ContributorstotheWhitePaper 64

2/64

1.Introduction

5Gsupportsthreescenarios:enhancedMobileBroadband(eMBB),Ultra-ReliableLow-LatencyCommunications(URLLC),andmassiveMachineTypeCommunication(mMTC).Exposureofcapabilitiesandeventsissupportedthroughthenetworkexposurefunction(NEF)orcommonAPIframework(CAPIF).Applicationfunctions(AFs)canobtainthedataofthe5GsystemviaNEF/CAPIF,whichpromotescross-layerinnovationbetweenthenetworkandAF.Asthevolumeofdatageneratedbymobilenetworkscontinuestogrow,theneedfordatacollectionanddataprocessinghasbecomeincreasinglyprominent.Correspondinglynetworkserviceshaveevolvedfromcommunicationservicetomultidimensionalservicesofcommunication,sensing,andartificialintelligence(AI).Traditionalmethodsofdatacollectionanddataprocessingarenotadaptedtonewchanges,anditisdifficulttomeettheadditionaldatarequirements.Thisisbecause5Gnetworksdonothaveaunifieddatamanagementframework.Asaresult,multipletypesofdatacannotbeintegratedorcoordinatelymanaged,whichmayincreasethecomplexityandcostsofdatagovernance.Focusingondatapipelines,5Gnetworksdonotfullyexploreorutilizethevalueofdata.Basedontheexistingmethods,datacollectionanddataprocessingrequirementsofvarioustypesofdatacannotbemet.Thedatavalueofcommunication,sensingandAIcannotbeexplored.Moreover,rightsandinterestsofdatacannotbeguaranteed.Thereisnotaunifieddatamanagementandcontrolframeworkfordataqualitymanagementtocannotguaranteethelegality,authenticity,andintegrityofdata.Therefore,5Gnetworkscannotmeettherequirementsofdataregulatorytheexpectationofprivacyandsecurityofusers.Intheaspectsofnewservices,itisdifficultfor5Gnetworkstoefficientlycollect,transmit,processandanalyze

largeamountsofdatainmobilenetworks,suchassensingdata,AImodel,etc.

Figure1-1LifeCycleManagementofDatainMobileNetwork

3/64

Datahasbecomeoneoftheproductionfactorsinthedigitalsociety.6Gisanimportantinfrastructureofdigitalsociety.Thedataofthe6Gsystemisinevitablyanimportantpartofthisproductionfactor.The"FrameworkandoverallobjectivesofthefuturedevelopmentofIMTfor2030andbeyond"[1],releasedbyInternationalTelecommunicationUnion-RadioCommunicationSector(ITU-R),proposessixmajorscenarios,includingImmersiveCommunication,MassiveCommunication,HyperReliableandLow-LatencyCommunication,UbiquitousConnectivity,AIandCommunication(AIAC),andIntegratedSensingandCommunication(ISAC).Thismeansthat6Gisamobilecommunicationsystemthatgoesbeyondcommunicationservices.Inadditiontotraditionaldatatransmissionpipelines,6Gintroducesinternaldataofmobilenetwork,suchassensingdatainISACandAIdatainAIAC,etc.Dataprovidersordataconsumersofmobilenetworkinternaldataincludeuserequipment(UE),radioaccessnetwork(RAN)nodes,andnetworkfunctions(NFs)ofcorenetwork(CN)andAFs.Incontrasttouserdataintraditionaldatatransmissionpipelines,the6Gsystemistaskedwithmanagingtheentirelifecycleofinternaldata,includinggeneration,securityandprivacy,coordinationofcollection,transmission,processing,

qualitymanagementanddataservice.

Therefore,adataplane[2]isintroducedtoenableaunifiedandefficientlifecyclemanagementofinternaldataofthe6Gnetwork.Forexample,thedataplaneprovidesdatarequiredbythesensingfunctionorNEF,sothatthe6Gsystemcanprovidethesensingserviceornetworkexposureservices.The6GDataPlane(DP),whichoperatesparalleltothecontrolplane(CP)anduserplane(UP),isnotconstrainedbythetransmissionrequirementsofsignalingoruserdata.ThisallowsthefunctionsandconfigurationsofDPprotocolcanbeoptimizedtoprovideabettersolutiontotheaforementionedneeds.Thisavoidsfragmentedsolutionsforindividualusecases.TheDPwillprovideaunifieddatamanagementframeworkforthe6Gsystem,enablingdatacapabilities.Asaresult,the6Gsystemwillbeabletointegrateandmanagemultipletypesofdata,ensuredatasecurityandtrustworthiness,breakdatasilos,improvetheefficiencyofdatagovernance,protectrightsandinterestsofdata.InthisWhitePaper,contributorsillustrateourinitialviewsandlatestachievementsonthescenariosandrequirementsof6Gdataservice,thedefinitionandframeworkofDP,keytechnologies,andprototypes,hopefullycontributingto6G

development.

2.ProgressofRelevantStandardOrganizations

Thischapterdescribesthe6GDPresearchprogressofmultiplestandardorganizationsandresearchinstitutionsaroundtheworld,including3rdGenerationPartnershipProject(3GPP),IMT-2030(6G)PromotionGroup,NextGAlliance,Hexa-X,and6GAllianceofNetworkAI(6GANA).Thesestandardorganizationshavedoneresearchesonthedatacollectionrequirements,

challenges,solutions,andtechnologytrendsof6G.

4/64

2.1.3GPP

Basedondatarequirementsofeachusecase,severalstandardsof5Gnetworkshavebeenstudiedandstandardizedtosupportdatacollectionanddataanalysis.Forexample,[3]isusedtocollectdataforthenetworkdataanalyticsfunction(NWDAF),whichistheAIfunctionofCN.Inaddition,therearestandardsofNEF/CAPI[4][5]fordatacollectionofnetworkexposure.ThereareLTEPositioningProtocol(LPP)[6]andNRPositioningProtocolA(NRPPa),whichareusedtotransmitpositioningdataforthelocationmanagementfunction(LMF).Thereareminimizationofdrivetest(MDT)[7]andqualityofexperience(QoE)usedforwirelessnetworkoptimizationand

management.

TomeetdatacollectionrequirementsoftheNWDAF,Release17introducestheDataCollectionCoordinationFunction(DCCF)tothe5GnetworktocollectdatafromNFsanddistributeresultsrequestedbyNFs[2].TheDCCFpreventsdataproviders,suchastheAccessandMobilityManagementFunction(AMF)andSessionManagementFunction(SMF)fromhandlingmultiplesubscriptionstothesamedataandsendingmultiplenotificationscontainingthesameinformationduetonocoordinationbetweendataconsumers.ExcepttheNWDAF,5GCNNFs,suchastheAMFandSMF,asmainnetworkelements(NEs)ofthecommunicationnetwork,mainlyprovidecommunicationservicesinsteadofdata.However,theNWDAFgenerallyneedstoobtainalargeamountofdataforbigdataanalysis.Repeatedreportingofalargeamountofidenticaldatadecreasestheperformanceof5GCNNFs.TheNWDAFcansubscribeorunsubscribedatafromtheDCCFthroughtheNdccfinterface.IftheDCCFhasnotpreviouslycollectedthedatarequestedbytheNWDAF,itcanusetheservice-basedinterface(SBI)tocollectthedatafromNFsorcollectdatathroughthemessagingframework.Subsequentlythedatacanbe

transmittedtotheNWDAFthrougheitherSBIormessagingframework.

FortheoptimizationandmanagementofRAN,thenetworkmanagementfunctioncansendanMDTorQoErequesttotheRANnode,whichtriggerstheRANnodetoconfigureMDTorQoEdatacollectiontotheUEs.TheMDTorQoEdatareportedbytheUEissenttothetracecollectionentity(TCE)ormeasurementcollectionentity(MCE)foranalysisthroughtheservicingRANnode.ThenetworkmanagementfunctionoptimizesconfigurationsofRANbasedonthe

self-organizingnetwork(SON).

TheLPPisusedtoexchangepositioningcontrolinformationandpositioningdatabetweentheUEandthenetwork.Generally,theamountofpositioningdataisnotlarge.Therefore,theLPPiscarriedontheCPprotocolstack.Inotherwords,thepositioningprotocolstackconsistsoftheLPP,non-accessstratum(NAS),RadioResourceControl(RRC),PacketDataConvergenceProtocol(PDCP),RadioLinkControl(RLC),MediumAccessControl(MAC),andPhysicalLayer(PHY).BasedonpositioningmeasurementdatatransmittedbytheLPP,theLMFestimates

thelocationinformationofUEsandprovidesitto5GNFsorAFs.

5/64

2.2.IMT-2030PromotionGroup

In6GNetworkArchitectureVision[8],IMT-2030PromotionGroupproposedthatthe6Gnetworkarchitecturerequiresakindofdatafunctionswhicharedifferentfromthetraditionaluserplane.Thedatafunctionssystematicallyaddressthechallengesofmanagingandmonetizingnon-traditionaluserplanedatainthe6Gnetwork.FromtheperspectiveofNFlayer,6Gdatafunctionsconsistofdataorchestrationandcontrol,dataprocessingandforwarding,anddatastorage.Basedonthecapabilityreportedbydataprocessingandforwardingnodesandrequirementsofdataservice,thedataorchestrationandcontrolnodeselectsthedatasourcenodes,processingandforwardingnodes.Basedonorchestration,theselectednodesformadatabearertoprovidedataservices.Thedataprocessingandforwardingnodeprovidesdataservicesasrequired,suchasdatacollection,datapreprocessing,datastorage,dataprivacyprotection,securityandtrustworthiness,dataanalysis,datasharing,anddataforwarding.Thestandardizationofdatalifecyclemanagementcanimprovedatacomparabilityandreusability,whichincludesprocessessuchasdataprivacy,securityandtrustworthiness,datacoordination,generation,andcollection,datastorage,datatransmission,dataprocessing,dataservice,anddataqualitymanagement,rightsand

interestsmanagement,etc.

In6GWirelessSystemDesignPrinciplesandTypicalFeatures[9],IMT-2030PromotionGroupproposedthatefficientdatagovernance,aunifieddatacollectionmethod,anddatalifecyclemanagementshouldbeconsideredatthebeginningof6Gsystemdesign.Nativedataisoneoftheprinciplesfor6Gwirelesssystemdesign.Thedesignofnativedatashouldensuredatasecurityandprivacy,improveefficiencyofdatacollection,transmission,andstorage.Thedesignofnativedatashouldalsoenhancedatasharingandreusability.Nativedatabuildsanopenandunifieddatalifecyclestandardtosupportallprocessesofubiquitousheterogeneousdatacirculation.Withcost-effective,efficient,andreliabledataservices,itenables6Gnetworksandassociatedindustriestoprocessandanalyzevarioustypesofdataaccuratelyandsystematically,so

astomakebetterdecisionsandprovidehigherqualityservices.

In6GDataServiceArchitectureResearch[10],IMT-2030PromotionGroupproposed6Gdataservicesandthedataplanearchitectureofthe6Gnetwork,anddescribedthefunctionoforchestrationandcontrol,processingfunctionsandsoon.In5G,therearematureprotocolstacksofCPandUPtosupportcommercialdeploymentandapplications.Theexistingprotocolstacksdecouplefunctionsbetweenplanes,andachievemodular,virtualized,andsoftware-basedfunctionmanagement.The6Gdataplanealsorequirescomplete,flexible,andscalableprotocolstackstosupportdataforwardingandcontrol,dataserviceexposure,dataagentmanagementandcontrol,

etc.

2.3.NextGAlliance

6/64

Inthe6GTechnologiesforWide-AreaCloudEvolution[11],theNextGAllianceproposedthatinadditiontocommunicationservices,computinganddataplaneswithdedicatedcomputinganddatamanagementfunctionsmaybeintroducedtocellularnetworks.The6GTechnologiesforWide-AreaCloudEvolution[11]drivesnetworkarchitecturedesignandintroducesnewfunctionsintermsof6Gnetworkcomputingservicestosupportdistributedcomputingandtightinterworkingbetweenthedistributedcloudand3GPPprotocols.Therefore,changesinthecontrol,management,anddataplanesneedtobestudiedtoadapttothedistributedcomputingprocess.Accordingtothereportcontent,thedataplaneissimilartotheuserplaneofexistingprotocols.It

ispossibletomeetcomputingservicerequirementsbyenhancingthedatabearer.

IntheAI-nativeWirelessNetworks[12],theNextGAllianceproposedthatcomparedwiththeapplicationsofAI/machinelearning(ML)in5G,AI/MLin6Gshouldhavethefollowingfeatures:Datacollectionwillbeatvariouslayerswithinthenetwork.Inadditiontonear-real-timemannerofAI/MLapplicationsof5G,AI/MLapplicationsfor6Gwilloperateinthereal-timemanner.AI/MLwillbeblendedintothedesignof6GandthetransceiversmaybedesignedtobeAI-nativeatthebeginningof6G.Therefore,itisnecessarythatAI/MLbeentrenchedinthedesignofradiolayerswithinterfacingtoAIanddata-collectionframeworks.Theseinteractionsneedastrongemphasisonsecurityandprivacy.ThisAInativemethodensuresrapidevolutionofwireless

technologies,whichmaybepartialindependentofstandardscycles.

2.4.Hexa-X

IntheDraftfoundationfor6Gsystemdesign[13],Hexa-XproposedthatthedatacollectionandAIframeworksarepervasivefunctionalitiesofthe6Gsystem.Thedatacollectionframeworksupportseveraldifferenttypesofdataandinformationtobecollectedfrommultipledomainsandlayersofthenetworkandmovedwithinthenetworkforanalysis.Datatransmissionandintegrationwilltakeplaceconsideringprivacyandownershipconcernsofallstakeholders.Couplingdataacrossapplicationsandnetworkswillprovidetheopportunitytoimprovethenetworkperformanceorenablenetworkawareapplications.Thedatacollectionframeworkcollectsthedatarequiredbythenetworkmanagementfunctionandsupportsreal-timecontroland

operationstoprocessrequireddata.

IntheFoundationofoverall6Gsystemdesignandpreliminaryevaluationresults[14],Hexa-XproposedthatAIneedsnovelarchitecturalelementsthatenableforprivacyawaredatacollectionandlearning.Data-drivennetworkcontrolunitsandUEaggregationunitsareintroducedtosupportdatasharingbetweenthenetworkandUEs,soastoimprovecontrolanddecisions.Basedondataprivacyrequirements,UE-orienteddatacollectionandlearningenableUEstotakeadvantageofnetworkinformationalongwithon-devicecontextualinformation(useractivity,intent,andusagepatterns)toassistthenetworkinconnectivitydecisions,i.e.,toimprove

theconnectivityQoE.

7/64

2.5.6GANA

Inthe6GDataService-ConceptandRequirement[15],6GANApointedoutthatthe6Gnetworkprovidesnewcapabilities,suchasnativeAI,nativesensing,andnativesecurityinthecontextofintegratedcommunication,sensing,andcomputing.Basedontheinformationtransmissioncapabilitiesoftraditionalmobilecommunicationnetworks,thenewcapabilitiesenhancethedataproductionandconsumptioncapabilitiesofthenetworkandmakethe6Gnetworkaplatformforinformationanddatacirculation.Efficientmanagementofdatacarriedonthe6Gnetworkisakeytechnologyofthe6Gnetwork.Therefore,basedonthetrusteddataserviceframeworkproposedintheWhitePaperon6GDataServiceConceptandRequirements[15],the6Gnetworkwillintroduceanindependentdataplane.The6Gdataplanebuildsarchitecture-levelunifiedandtrusteddataservicestoclarifythedatasource,description,

collection,processing,storage,application,andprivacyprotection.

3.6GDataServiceScenariosandRequirementAnalysis

6Gdataservicesindicatethatthe6Gsystemprovidesdataresourcestointernalfunctions,suchastheUE,RAN,andCN.Thecollecteddatacanbeusedbynetworkcapabilityexposurefunctions(suchastheNEForCAPIF)toprovidedatanetworkcapabilitiesoreventtoexternalfunctionsofthe6Gsystem,suchasAFs.Inaddition,thecollecteddatacanbeusedbythesensingfunctiontoprovidesensingservicestoAFsorNFs,orbeusedbytheAIfunctionstoprovide

assistanceinformationforthecontrolandoptimizationofnetworks.

Withdataasthecoreelement,6Gdataservicesaimtofullyutilizethevalueof6Gdata,soastobreakthroughtheboundariesofsingle-dimensionalmobileservicesandpromoteintegratedinnovationofservices.Thedataof6Gnetworksindicatethedatageneratedorobtainedbythe6Gsysteminsteadofthedatainthetraditionaluserplane.ItincludesthedatageneratedbytheUEs,RAN,CN,andnetworkmanagementfunctionsduringtheoperationsofcommunicationservices.Italsoincludessensingdata(e.g.,sensingmeasurements)andAIdata(e.g.,AImodel)generatedbyUEs,RAN,CNandnetworkmanagementfunctionsduringtheoperationsofnewservices(e.g.,sensingservices,AIservices).Theshareabledataobtainedbythe6Gnetworksfromthirdpartiesisalsoincluded,suchasvarioustypesofsensorinformation(includingtemperature,humidity,andenvironment)andgeographicinformationsystem(GIS)information.Thischapterdescribes

scenariosof6Gdataserviceandanalyzespotentialrequirements.

3.1.SensingData

3.1.1.Description

8/64

Sensingdatainthe6Gsystemisthedatadescribingthephysicalworldstatusobtainedthroughradiowavesorothersensorsduringphysicalworldexploration.Sensingdatamainly

includesnativesensingdata,externalsensingdata,andmulti-modalintegratedsensingdata.

>Nativesensingdata

The6Gmobilecommunicationsystemhasasensingfunction,thatis,nativesensing.Nativesensingdataisthedatageneratedduringnativesensingofthe6Gmobilecommunicationsystem.ItincludesnativesensingmeasurementdataobtainedbytheUEorRANnodebasedonairinterfacesignalmeasurement,andnativesensingresults.Generally,thenativesensingmeasurementdataincludestwotypes.Oneisthedataobtainedduringsensingmeasurementtoassistindatacommunication,suchasthedatameasuredforsensingthechannelenvironment.Theotheristhedatameasuredpurelyforsensingthetargetobjectorenvironment,suchasthesignalstrengthandarrivaltimemeasuredduringpositioning,andtheRFsignaldatameasuredduringranging,speedmeasurement,andimaging.Throughnativesensing,the6Gsystemobtainsthe

sensingresults,suchastheposition,speed,andimagingofthesensingtarget.

>Externalsensingdata

Externalsensingdataisthedatathatthe6Gsystemobtainsfromexternalthird-partyIoTsensorsorGIS,whichincludesintermediatemeasurementdataandsensingresults.Thedataisnotinvisibledatathatistransparentlytransmittedonthenetwork.Itneedstobeprocessedbythesensingmoduleofthe6Gsystemtogeneratesensingmeasurementintermediatedataorevenusablesensingresults.Forexample,the6Gsystemconnectstoautomaticrecognitionequipment,suchasbarcoderecognition,imagerecognition,andradiofrequencyidentification(RFID)toobtaintargetinformation,andconnectstovarioustypesofsensorstoobtainphysicalinformation,suchasbiomass,chemical,heat,pressure,temperature,sound,light,electricity,andvibrationinformation.Thesensorsmainlyincludemechanicalsensors(suchasthedisplacementsensorandlevelsensor),geometricsensors,forcesensors(suchasthepressuresensorandspeedsensor),thermalsensors(suchasthetemperaturesensor),opticalsensors(suchastheimagesensorandinfrared/ultravioletsensor),electromagneticsensors(suchastheelectricfieldsensorandvoltagesensor),acousticsensors(suchasthesoundsurfacewavesensorandultrasonicsensor),raysensors,humiditysensors,gassensors(suchasthegascompositionsensorandgasconcentration

sensor),ionsensors(suchasthePHsensors),physiologicalsensors,andbiochemicalsensors.

>Multi-modalintegratedsensingdata

Comparedwithnativeorexternalsensingdata,multi-modalintegratedsensingdatafocusesonintegratedprocessingofthesetwotypesofdata.Inthe6Gsystem,multi-modalsensingdataincludesnativeandexternalsensingdata,whichcanbeprocessedseparatelyorgeneratenew

sensingdataorsensingresultsthroughintegratedsensing.Multi-modalintegratedsensing

9/64

incorporatesnativesensingandexternalsensing.Itintegratesdatafrommultiplesensingchannelsforunderstandingandprocessing.Varioustypesofsensingdatacollaborate,complement,revise,andenhanceeachothertogeneratebettersensingresultsthansingletypesofsensingdata.Forexample,inanindoorenvironmentcoveredbythelandmobilecommunicationsystemandInternetofThings(IoT)terminals,cellularpositioningdatacanbeusedtogetherwithdataofexternalIoTsensingdevices,suchasWi-Fi,Bluetooth,Zigbee,andUWBpositioningdatato

generatemulti-modalintegratedsensingdata.

3.1.2.PotentialRequirements

Inthe6Gsystem,varioustypesofsensingareavailable,andthesensingdataisextensive.Thenewandoptimizedsensingfunctioncausesahugeamountofdatainthelandmobilecommunicationsystem.Inadditiontonativesensing,the6Gsystemneedstoprocessandtransmit

externalsensingdataandmulti-modalintegratedsensingdata.

Specifically,thefunctionalrequirementsonthe6Gsystemareasfollows:

1)Datacollection:Duringnativesensing,the6GsystemusessignalingtomeasureparameterstransmittedthroughradiowavesandRFchannelsandcollectssensingdatafromvarioustypesofIoTsensingdevicesoverdifferentinterfaces.

2)Dataprocessing:The6Gsystemprocessesthecollectedsensingdata.ThroughAImodeltraining,computing,andotherprocessingmethodsforsensingdataobtainedfromvarioussensingchannels,usablesensingresultsareobtained.Theusablesensingresultsassistindecisionmakingandexecutionofcommunicationorotherfunctionsinthe6Gsystem,orareusedasinputparameterstoassistsomeapplications.Duringmulti-modalintegratedsensing,datafrommultiplesensingchannelscanbecollaborativelyprocessedtoensurebettersensingperformance.

3)Datatransmission:Inthe6Gsystem,massivevolumeofsensingdataneedstobetransmitted.Theintermediatemeasurementdataneedstobetransmittedtonetworkorcomputingnodesforintegrationandcalculation,soastoobtainsensingdataorsensingresults.Forexample,duringcellularpositioning,measurementdata,includingthesignalstrengthandsignalarrivaltimebetweenaUEandmultipleRANnodesneedsto

betransmittedandintegratedtoobtainthelocationinformationoftheUE.

Theperformancerequirementsonthe6Gsystemareasfollows:

1)Duetomassivevolumeofsensingdatainthe6Gsystemanddifferentsensingdatarequirementsofvarioustypesofapplications,the6Gcommunicationsystemneedstohavegoodtransmissionperformance,includingthebandwidthandlatency.AccordingtoStudyonScenariosandRequirementsof5G-AdvancedIntegratedSensingandCommunication[16],thesensingdatarateisabout1kbpsto10Mbps.

2)Tocalculateandmakedecisionsonmassivevolumeofsensingdata,the6GsystemneedstohavestrongcomputingpowerandbetterperformanceforAImodelsand

10/64

variousalgorithms.

3)Sensingdatainvolvesalargeamountofuserprivacybecauseitcomesfromphysicalstatusinformationaboutpeople,device,andenvironmentrelatedtoToBorToCusers.The6Gsystemneedstomeetapplicationrequirementsandensureusersecurityandprivacywhenperformingsensing.

3.2.AIModelTrainingData

3.2.1.Description

Onthe5GCN,theNWDAFismainlyusedforprediction,suchasUElocationpredictionandNEloadpredictioninAIanalysisscenarios,suchasdataandmodeltrainingandmodelinference.Insuchscenarios,asmall-scaleneuralnetworkmodel,suchastherecurrentneuralnetwork(RNN),convolutionalneuralnetwork(CNN),orlongshort-termmemory(LSTM)isused.Generally,themodelcontainsthousandstohundredsofthousandsofparameters.TheMTLFneedstocollecttenstohundredsofmegabytesofmodeltrainingdatatotrainamodel.The6GnetworkhasmoreextensiveAIanalysisscenarios,suchasobjectrecognitionandtrajectoryplanningbasedonsensingdataandnetworkpolicycontrolbasedonnetworkdata.Drivenbydiversescenarios,the6Gnetworkrequireslarger-scaleandmorecomplexmodelsforinferenceandanalysis.Academicresearchresultsshowthattheamountofdatarequiredtotrainamodelisproportionaltothemodelsize.Totrainamodelwith100millionmodelparameters,atleast8GB

dataisrequiredforpre-training,andotherspecifi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論