陜西省安工業(yè)大附屬中學2024年中考數(shù)學對點突破模擬試卷含解析_第1頁
陜西省安工業(yè)大附屬中學2024年中考數(shù)學對點突破模擬試卷含解析_第2頁
陜西省安工業(yè)大附屬中學2024年中考數(shù)學對點突破模擬試卷含解析_第3頁
陜西省安工業(yè)大附屬中學2024年中考數(shù)學對點突破模擬試卷含解析_第4頁
陜西省安工業(yè)大附屬中學2024年中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省安工業(yè)大附屬中學2024年中考數(shù)學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發(fā),沿路徑A→D→C→E運動,則△APE的面積y與點P經(jīng)過的路徑長x之間的函數(shù)關系用圖象表示大致是()A. B. C. D.2.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱3.某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”D.擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是64.-sin60°的倒數(shù)為()A.-2 B. C.- D.-5.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據(jù)測定,楊絮纖維的直徑約為0.0000105m,該數(shù)值用科學記數(shù)法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣76.根據(jù)物理學家波義耳1662年的研究結果:在溫度不變的情況下,氣球內氣體的壓強p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關系的是()A. B.C. D.7.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a(chǎn)>3 B.a(chǎn)<3 C.a(chǎn)≥3 D.a(chǎn)≤38.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.9.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=410.我國古代數(shù)學家劉徽創(chuàng)立的“割圓術”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術”,將π的值精確到小數(shù)點后第七位,這一結果領先世界一千多年,“割圓術”的第一步是計算半徑為1的圓內接正六邊形的面積S6,則S6的值為()A. B.2 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系中,點A的坐標是(-1,2).作點A關于x軸的對稱點,得到點A1,再將點A1向下平移4個單位,得到點A2,則點A2的坐標是_________.12.計算:7+(-5)=______.13.老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個多項式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:則所捂住的多項式是___.14.關于的一元二次方程有兩個相等的實數(shù)根,則的值等于_____.15.在平面直角坐標系的第一象限內,邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a).如圖,若曲線與此正方形的邊有交點,則a的取值范圍是________.16.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB在x軸上,,,邊AD長為5.現(xiàn)固定邊AB,“推”矩形使點D落在y軸的正半軸上(落點記為),相應地,點C的對應點的坐標為_______.三、解答題(共8題,共72分)17.(8分)已知:如圖,AB=AC,點D是BC的中點,AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.18.(8分)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)19.(8分)已知,拋物線L:y=x2+bx+c與x軸交于點A和點B(-3,0),與y軸交于點C(0,3).(1)求拋物線L的頂點坐標和A點坐標.(2)如何平移拋物線L得到拋物線L1,使得平移后的拋物線L1的頂點與拋物線L的頂點關于原點對稱?(3)將拋物線L平移,使其經(jīng)過點C得到拋物線L2,點P(m,n)(m>0)是拋物線L2上的一點,是否存在點P,使得△PAC為等腰直角三角形,若存在,請直接寫出拋物線L2的表達式,若不存在,請說明理由.20.(8分)“大美濕地,水韻鹽城”.某校數(shù)學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據(jù)調查結果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調查的學生總人數(shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B“的學生人數(shù).21.(8分)有四張正面分別標有數(shù)字﹣1,0,1,2的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.隨機抽取一張卡片,求抽到數(shù)字“﹣1”的概率;隨機抽取一張卡片,然后不放回,再隨機抽取一張卡片,請用列表或畫樹狀圖的方法求出第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”的概率.22.(10分)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數(shù);②求證:P點為△ABC的費馬點.23.(12分)如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.若∠ABC=70°,則∠NMA的度數(shù)是度.若AB=8cm,△MBC的周長是14cm.①求BC的長度;②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.24.某商場服裝部為了調動營業(yè)員的積極性,決定實行目標管理,根據(jù)目標完成的情況對營業(yè)員進行適當?shù)莫剟睿疄榱舜_定一個適當?shù)脑落N售目標,商場服裝部統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:171816132415282618192217161932301614152615322317151528281619對這30個數(shù)據(jù)按組距3進行分組,并整理、描述和分析如下.頻數(shù)分布表組別一二三四五六七銷售額頻數(shù)79322數(shù)據(jù)分析表平均數(shù)眾數(shù)中位數(shù)20.318請根據(jù)以上信息解答下列問題:填空:a=,b=,c=;若將月銷售額不低于25萬元確定為銷售目標,則有位營業(yè)員獲得獎勵;若想讓一半左右的營業(yè)員都能達到銷售目標,你認為月銷售額定為多少合適?說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

由題意可知,當時,;當時,;當時,.∵時,;時,.∴結合函數(shù)解析式,可知選項B正確.【點睛】考點:1.動點問題的函數(shù)圖象;2.三角形的面積.2、A【解析】

由BD是∠ABC的角平分線,根據(jù)角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據(jù)兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據(jù)等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數(shù)學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.3、D【解析】

根據(jù)統(tǒng)計圖可知,試驗結果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據(jù)圖中信息,某種結果出現(xiàn)的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質地均勻的硬幣,落地時結果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關鍵.4、D【解析】分析:根據(jù)乘積為1的兩個數(shù)互為倒數(shù),求出它的倒數(shù)即可.詳解:的倒數(shù)是.故選D.點睛:考查特殊角的三角函數(shù)和倒數(shù)的定義,熟記特殊角的三角函數(shù)值是解題的關鍵.5、C【解析】試題分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.所以0.0000105=1.05×10﹣5,故選C.考點:科學記數(shù)法.6、C【解析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【點睛】本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.7、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.8、B【解析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.9、D【解析】

A、表示81的算術平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【點睛】本題主要考查的是實數(shù)的運算,掌握算術平方根、平方根和二次根式的性質以及完全平方公式是解題的關鍵.10、C【解析】

根據(jù)題意畫出圖形,結合圖形求出單位圓的內接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點睛】本題考查了已知圓的半徑求其內接正六邊形面積的應用問題,關鍵是根據(jù)正三角形的面積,正n邊形的性質解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、(-1,-6)【解析】

直接利用關于x軸對稱點的性質得出點A1坐標,再利用平移的性質得出答案.【詳解】∵點A的坐標是(-1,2),作點A關于x軸的對稱點,得到點A1,

∴A1(-1,-2),

∵將點A1向下平移4個單位,得到點A2,

∴點A2的坐標是:(-1,-6).

故答案為:(-1,-6).【點睛】解決本題的關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).12、2【解析】

根據(jù)有理數(shù)的加法法則計算即可.【詳解】.故答案為:2.【點睛】本題考查有理數(shù)的加法計算,熟練掌握加法法則是關鍵.13、x2+7x-4【解析】

設他所捂的多項式為A,則接下來利用去括號法則對其進行去括號,然后合并同類項即可.【詳解】解:設他所捂的多項式為A,則根據(jù)題目信息可得他所捂的多項式為故答案為【點睛】本題是一道關于整數(shù)加減運算的題目,解答本題的關鍵是熟練掌握整數(shù)的加減運算;14、【解析】分析:先根據(jù)根的判別式得到a-1=,把原式變形為,然后代入即可得出結果.詳解:由題意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案為-3.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△<0,方程沒有實數(shù)根;當△=0,方程有兩個,相等的實數(shù)根,也考查了一元二次方程的定義.15、-1≤a≤【解析】

根據(jù)題意得出C點的坐標(a-1,a-1),然后分別把A、C的坐標代入求得a的值,即可求得a的取值范圍.【詳解】解:反比例函數(shù)經(jīng)過點A和點C.當反比例函數(shù)經(jīng)過點A時,即=3,解得:a=±(負根舍去);當反比例函數(shù)經(jīng)過點C時,即=3,解得:a=1±(負根舍去),則-1≤a≤.故答案為:-1≤a≤.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,關鍵是掌握反比例函數(shù)y=(k為常數(shù),k≠0)的圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.16、【解析】分析:根據(jù)勾股定理,可得,根據(jù)平行四邊形的性質,可得答案.詳解:由勾股定理得:=,即(0,4).矩形ABCD的邊AB在x軸上,∴四邊形是平行四邊形,A=B,=AB=4-(-3)=7,與的縱坐標相等,∴(7,4),故答案為(7,4).點睛:本題考查了多邊形,利用平行四邊形的性質得出A=B,=AB=4-(-3)=7是解題的關鍵.三、解答題(共8題,共72分)17、見解析【解析】試題分析:證明簡單的線段相等,可證線段所在的三角形全等,結合本題,證△ADB≌△AEB即可.試題解析:∵AB=AC,點D是BC的中點,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.18、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD?tan∠ACD=5.9×0.32=1.888≈1.9(米),則改建后南屋面邊沿增加部分AD的長約為1.9米.考點:解直角三角形的應用19、(1)頂點(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【解析】

(1)將點B和點C代入求出拋物線L即可求解.(2)將拋物線L化頂點式求出頂點再根據(jù)關于原點對稱求出即可求解.(3)將使得△PAC為等腰直角三角形,作出所有點P的可能性,求出代入即可求解.【詳解】(1)將點B(-3,0),C(0,3)代入拋物線得:,解得,則拋物線.拋物線與x軸交于點A,,,A(-1,0),拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1).(2)拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1)拋物線L1的頂點與拋物線L的頂點關于原點對稱,對稱頂點坐標為(2,1),即將拋物線向右移4個單位,向上移2個單位.(3)使得△PAC為等腰直角三角形,作出所有點P的可能性.是等腰直角三角形,,,,,求得.,同理得,,,由題意知拋物線并將點代入得:.【點睛】本題主要考查拋物線綜合題,討論出P點的所有可能性是解題關鍵.20、(1)40;(2)72;(3)1.【解析】

(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調查的學生總人數(shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點的人數(shù)所占的百分比即可.【詳解】(1)被調查的學生總人數(shù)為8÷20%=40(人);(2)最想去D景點的人數(shù)為40﹣8﹣14﹣4﹣6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=1,所以估計“最想去景點B“的學生人數(shù)為1人.21、(1);(2).【解析】試題分析:(1)根據(jù)概率公式可得;(2)先畫樹狀圖展示12種等可能的結果數(shù),再找到符合條件的結果數(shù),然后根據(jù)概率公式求解.解:(1)∵隨機抽取一張卡片有4種等可能結果,其中抽到數(shù)字“﹣1”的只有1種,∴抽到數(shù)字“﹣1”的概率為;(2)畫樹狀圖如下:由樹狀圖可知,共有12種等可能結果,其中第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”只有1種結果,∴第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”的概率為.22、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內角和定理及等式性質得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質得到兩對邊相等,兩個角為60°,利用等式的性質得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應角相等得到∠1=∠2,再由對頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CPF相似,得到比例式,變形得到積的恒等式,再由對頂角相等,利用兩邊成比例,且夾角相等的三角形相似得到三角形AFP與三角形CFD相似,利用相似三角形對應角相等得到∠APF為60°,由∠APD+∠DPC,求出∠APC為120°,進而確定出∠APB與∠BPC都為120°,即可得證.試題解析:(1)證明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA?PC=12,∴PB=23;(2)解:①∵△ABE與△ACD都為等邊三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,AC=AD∠EAC=∠BAD∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②證明:∵△ADF∽△CFP,∴AF?PF=DF?CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P點為△ABC的費馬點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論