2024屆河南省頂級名校高三壓軸卷數學試卷含解析_第1頁
2024屆河南省頂級名校高三壓軸卷數學試卷含解析_第2頁
2024屆河南省頂級名校高三壓軸卷數學試卷含解析_第3頁
2024屆河南省頂級名校高三壓軸卷數學試卷含解析_第4頁
2024屆河南省頂級名校高三壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省頂級名校高三壓軸卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.2.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數為()A.8 B.7 C.6 D.53.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.4.集合,則()A. B. C. D.5.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.6.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直7.已知復數滿足,則()A. B. C. D.8.已知復數滿足,則()A. B. C. D.9.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數記為.則()A. B.C. D.10.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學院、國防大學、國防科技大學聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現(xiàn)知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生11.設,點,,,,設對一切都有不等式成立,則正整數的最小值為()A. B. C. D.12.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,越小,模型的擬合效果越好;③若數據的方差為1,則的方差為4;④已知一組具有線性相關關系的數據,其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數為()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.14.已知復數,其中為虛數單位,則的模為_______________.15.在平行四邊形中,已知,,,若,,則____________.16.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求函數的最小正周期以及單調遞增區(qū)間;(2)已知,若,,,求的面積.18.(12分)已知橢圓與x軸負半軸交于,離心率.(1)求橢圓C的方程;(2)設直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標,如果不是,請說明理由.19.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.20.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統(tǒng)計數據如下:愿意不愿意男生6020女士4040(1)根據上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現(xiàn)從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82821.(12分)如圖,三棱柱中,側面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.22.(10分)已知函數.(1)若關于的不等式的整數解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.2、B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.3、B【解析】

由題意,框圖的作用是求分段函數的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數學運算的能力,屬于基礎題.4、D【解析】

利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.5、D【解析】

設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.6、D【解析】

根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.7、A【解析】

由復數的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數的運算.屬于簡單題.8、A【解析】

根據復數的運算法則,可得,然后利用復數模的概念,可得結果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數的運算,考驗計算,屬基礎題.9、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數,對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.10、C【解析】

根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.11、A【解析】

先求得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數的最小值為3.【點睛】本題考查了數列的通項及求和問題,考查了數列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.12、C【解析】

①根據線性相關性與r的關系進行判斷,

②根據相關指數的值的性質進行判斷,

③根據方差關系進行判斷,

④根據點滿足回歸直線方程,但點不一定就是這一組數據的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關性越強,則相關系數r的絕對值越接近于1,故①正確;

②用相關指數的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;

③若統(tǒng)計數據的方差為1,則的方差為,故③正確;

④因為點滿足回歸直線方程,但點不一定就是這一組數據的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;

所以正確的命題有①③.

故選:C.【點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】

根據偽代碼逆向運算求得結果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結果:【點睛】本題考查算法中的語言,屬于基礎題.14、【解析】

利用復數模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點睛】本題考查復數模的求法,屬于基礎題.15、【解析】

設,則,得到,,利用向量的數量積的運算,即可求解.【詳解】由題意,如圖所示,設,則,又由,,所以為的中點,為的三等分點,則,,所以.【點睛】本題主要考查了向量的共線定理以及向量的數量積的運算,其中解答中熟記向量的線性運算法則,以及向量的共線定理和向量的數量積的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.16、【解析】

求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進而求得外接球的表面積.【詳解】設是等邊三角形的外心,則球心在其正上方處.設,由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點睛】本小題主要考查幾何體外接球表面積的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調遞增區(qū)間為;(2).【解析】

(1)利用三角恒等變換思想化簡函數的解析式為,利用正弦型函數的周期公式可求得函數的最小正周期,解不等式可求得該函數的單調遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數的最小正周期為,由得,因此,函數的單調遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數的周期和單調區(qū)間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應用,考查計算能力,屬于中等題.18、(1)(2)直線恒過定點,詳見解析【解析】

(1)依題意由橢圓的簡單性質可求出,即得橢圓C的方程;(2)設直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點的坐標,同理可求出點的坐標,根據的坐標可求出直線的方程,將其化簡成點斜式,即可求出定點坐標.【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設直線的方程為:,則∴或,∴,同理,當時,由有.∴,同理,又∴,當時,∴直線的方程為∴直線恒過定點,當時,此時也過定點..綜上:直線恒過定點.【點睛】本題主要考查利用橢圓的簡單性質求橢圓的標準方程,以及直線與橢圓的位置關系應用,定點問題的求法等,意在考查學生的邏輯推理能力和數學運算能力,屬于難題.19、(1)見解析;(2)【解析】

(1)由題可知,根據三角形的中位線的性質,得出,根據矩形的性質得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據面面垂直的性質,得出平面,從而得出到平面的距離為,結合棱錐的體積公式,即可求得結果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質和棱錐的體積公式,考查邏輯推理和計算能力.20、(1)有99%把握認為愿意參加新生接待工作與性別有關;(2)詳見解析.【解析】

(1)計算得到,由此可得結論;(2)根據分層抽樣原則可得男生和女生人數,由超幾何分布概率公式可求得的所有可能取值所對應的概率,由此得到分布列;根據數學期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認為愿意參加新生接待工作與性別有關.(2)根據分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數學期望的求解;關鍵是能夠明確隨機變量服從于超幾何分布,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論