版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省常州市高級中學高三下學期聯(lián)合考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在復平面內(nèi),復數(shù)(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導出復數(shù)乘方公式:,已知,則()A. B.4 C. D.162.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里3.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或44.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設,,則當時,的最大值是()A.8 B.9 C.10 D.115.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.6.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數(shù)為()A.1 B.2 C.3 D.07.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.8.設,則復數(shù)的模等于()A. B. C. D.9.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.610.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.11.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.12.若集合,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.滿足線性的約束條件的目標函數(shù)的最大值為________14.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.15.已知函數(shù)在點處的切線經(jīng)過原點,函數(shù)的最小值為,則________.16.在數(shù)列中,,,曲線在點處的切線經(jīng)過點,下列四個結論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結論的編號是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,側(cè)面是菱形,其對角線的交點為,且.(1)求證:平面;(2)設,若直線與平面所成的角為,求二面角的正弦值.18.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當直線經(jīng)過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設直線的斜率分別是,當直線的縱截距為1時,有數(shù)列滿足,設數(shù)列的前n項和為,已知存在正整數(shù)使得,求m的值.19.(12分)設為實數(shù),在極坐標系中,已知圓()與直線相切,求的值.20.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學化學學科的轉(zhuǎn)換分為:設該同學化學科的轉(zhuǎn)換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68221.(12分)已知函數(shù).(1)若,且,求證:;(2)若時,恒有,求的最大值.22.(10分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;(2)設,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)復數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復數(shù)的新定義題目、同時考查了復數(shù)模的求法,解題的關鍵是理解棣莫弗定理,將復數(shù)化為棣莫弗定理形式,屬于基礎題.2、B【解析】
人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數(shù)列的應用,意在考查學生的計算能力和應用能力.3、C【解析】
對a進行分類討論,結合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學運算和數(shù)學抽象的核心素養(yǎng).4、B【解析】
根據(jù)題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數(shù)列,∴.∵是以1為首項,2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學生對于數(shù)列公式方法的靈活運用.5、D【解析】
使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.6、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數(shù)為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.7、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.8、C【解析】
利用復數(shù)的除法運算法則進行化簡,再由復數(shù)模的定義求解即可.【詳解】因為,所以,由復數(shù)模的定義知,.故選:C【點睛】本題考查復數(shù)的除法運算法則和復數(shù)的模;考查運算求解能力;屬于基礎題.9、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結合基本不等式即可求解.【詳解】設橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.10、A【解析】
列出每一步算法循環(huán),可得出輸出結果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.11、B【解析】
首先求得兩曲線的交點坐標,據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.12、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
作出不等式組表示的平面區(qū)域,將直線進行平移,利用的幾何意義,可求出目標函數(shù)的最大值?!驹斀狻坑桑?,作出可行域,如圖所示:平移直線,由圖像知,當直線經(jīng)過點時,截距最小,此時取得最大值。由,解得,代入直線,得?!军c睛】本題主要考查簡單的線性規(guī)劃問題的解法——平移法。14、24【解析】
先求出每地一名醫(yī)生,3名護士的選派方法的種數(shù),再減去甲乙兩名護士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護士的選派方法的種數(shù)有,若甲乙兩名護士到同一地的種數(shù)有,則甲乙兩名護士不到同一地的種數(shù)有.故答案為:.【點睛】本題考查利用間接法求排列組合問題,正難則反,是基礎題.15、0【解析】
求出,求出切線點斜式方程,原點坐標代入,求出的值,求,求出單調(diào)區(qū)間,進而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當時,;當時,.故函數(shù)的最小值,所以.故答案為:0.【點睛】本題考查導數(shù)的應用,涉及到導數(shù)的幾何意義、極值最值,屬于中檔題..16、①③④【解析】
先利用導數(shù)求得曲線在點處的切線方程,由此求得與的遞推關系式,進而證得數(shù)列是等比數(shù)列,由此判斷出四個結論中正確的結論編號.【詳解】∵,∴曲線在點處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數(shù)列,從而,,.故所有正確結論的編號是①③④.故答案為:①③④【點睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關系式證明等比數(shù)列,考查等比數(shù)列通項公式和前項和公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)根據(jù)菱形的特征和題中條件得到平面,結合線面垂直的定義和判定定理即可證明;
2建立空間直角坐標系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點,,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因為,則在等腰直角三角形中,所以.在中,由得,以為原點,分別以為軸建立空間直角坐標系.則所以設平面的一個法向量為,則,可得,取平面的一個法向量為,則,所以二面角的正弦值的大小為.(注:問題(2)可以轉(zhuǎn)化為求二面角的正弦值,求出后,在中,過點作的垂線,垂足為,連接,則就是所求二面角平面角的補角,先求出,再求出,最后在中求出.)【點睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.18、(1)(2)【解析】
(1)設出直線的方程,再與拋物線聯(lián)立方程組,進而求得點的坐標,結合弦長即可求得拋物線的方程;(2)設直線的方程,運用韋達定理可得,可得之間的關系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設過拋物線焦點的直線方程為,與拋物線方程聯(lián)立得:,設,所以,,,所以拋物線方程為(2)設直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關系,考查了韋達定理和運用裂項法求數(shù)列的和,考查了運算能力,屬于中檔題.19、【解析】
將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因為相切,所以圓心到直線的距離等于半徑,即解得.【點睛】本題考查極坐標方程與普通方程的互化,考查直線與圓的位置關系,是基礎題.20、(1)(i)83.;(ii)272.(2)見解析.【解析】
(1)根據(jù)原始分數(shù)分布區(qū)間及轉(zhuǎn)換分區(qū)間,結合所給示例,即可求得小明轉(zhuǎn)換后的物理成績;根據(jù)正態(tài)分布滿足N60,122(2)根據(jù)各等級人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項分布即可求得X【詳解】(1)(i)設小明轉(zhuǎn)換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉(zhuǎn)換后的物理成績?yōu)?3分;(ii)因為物理考試原始分基本服從正態(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數(shù)為2000×0.136=272(人);(2)由題意得,隨機抽取1人,其等級成績在區(qū)間61,80內(nèi)的概率為25隨機抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數(shù)學期望EX【點睛】本題考查了統(tǒng)計的綜合應用,正態(tài)分布下求某區(qū)間概率的方法,分布列及數(shù)學期望的求法,文字多,數(shù)據(jù)多,需要細心的分析和理解,屬于中檔題。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年工業(yè)地產(chǎn)有償轉(zhuǎn)讓協(xié)議
- 2024年度南京二手房交易合同
- 2024年度水果交易合同模板
- 【初中生物】病毒教學課件2024-2025學年人教版生物七年級上冊
- 2024年度法律服務委托合同
- 2024年度工程監(jiān)理合同標的及服務內(nèi)容具體描述
- 2024年工程勞務分包補充協(xié)議
- 2024個人向公司借款合同范本(簡單版)
- 2024冷卻塔填料生產(chǎn)工藝優(yōu)化合同
- 2024年度CFG樁基工程水土保持合同
- 腎內(nèi)科激素的用藥知識-健康科普知識講座課件
- 關于工商管理社會實踐報告
- 學校食堂調(diào)查方案
- 2024年航空職業(yè)技能鑒定考試-無人機AOPA駕駛證考試(視距內(nèi)駕駛員視距內(nèi)駕駛員)筆試歷年真題薈萃含答案
- 激勵理論-赫茨伯格的“雙因素理論”案例分析課件
- JC-T 738-2004水泥強度快速檢驗方法
- 胸腔積液患者病例討論
- 第六章-冷凍真空干燥技術-wang
- 建設項目設計管理方案
- 2024年屆海南航空控股股份有限公司招聘筆試參考題庫含答案解析
- 前程無憂在線測試題庫及答案行測
評論
0/150
提交評論