版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吉林省延邊州汪清縣四中2023-2024學年高三第三次模擬考試數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.計算等于()A. B. C. D.2.已知函數(shù),方程有四個不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)4.已知傾斜角為的直線與直線垂直,則()A. B. C. D.5.設,,則()A. B.C. D.6.已知,,則等于().A. B. C. D.7.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.8.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.9.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.10.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.11.已知集合,集合,則A. B.或C. D.12.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中第項與第項的二項式系數(shù)相等,則__________.14.已知,則__________.15.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.16.已知函數(shù),則關于的不等式的解集為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)陣,其中、、、.設,其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過.18.(12分)設函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.19.(12分)已知函數(shù),其中,.(1)當時,求的值;(2)當?shù)淖钚≌芷跒闀r,求在上的值域.20.(12分)已知函數(shù),.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數(shù),當時,討論零點的個數(shù).21.(12分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數(shù)精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學期望.附:(1)相關系數(shù)(2),,,.22.(10分)在極坐標系中,曲線的極坐標方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設曲線與曲線交于,兩點,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用誘導公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數(shù)運算,屬于基礎題.2、A【解析】
作出函數(shù)的圖象,得到,把函數(shù)有零點轉(zhuǎn)化為與在(2,4]上有交點,利用導數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數(shù)零點的判定,考查數(shù)學轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓練了利用導數(shù)研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.3、C【解析】
根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.4、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式即可得出結(jié)果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式,考查計算能力,屬于基礎題.5、D【解析】
由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎題.6、B【解析】
由已知條件利用誘導公式得,再利用三角函數(shù)的平方關系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導公式、同角三角函數(shù)的平方關系以及三角函數(shù)的符號與位置關系,屬于基礎題.7、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.8、A【解析】
結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點睛】本題考查與“楊輝三角”有關的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應用,屬于中檔題9、D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關的問題,本題屬于基礎題.10、A【解析】
設為、的夾角,根據(jù)題意求得,然后建立平面直角坐標系,設,,,根據(jù)平面向量數(shù)量積的坐標運算得出點的軌跡方程,將和轉(zhuǎn)化為圓上的點到定點距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉(zhuǎn)化為圓上的點與點的距離,,,,轉(zhuǎn)化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉(zhuǎn)化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應用,屬于中等題.11、C【解析】
由可得,解得或,所以或,又,所以,故選C.12、D【解析】
中位數(shù)指一串數(shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)的展開式中第項與第項的二項式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因為的展開式中第項與第項的二項式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點睛】本題主要考查二項式的系數(shù),還考查了運算求解的能力,屬于基礎題.14、【解析】
首先利用,將其兩邊同時平方,利用同角三角函數(shù)關系式以及倍角公式得到,從而求得,利用誘導公式求得,得到結(jié)果.【詳解】因為,所以,即,所以,故答案是.【點睛】該題考查的是有關三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關系式,倍角公式,誘導公式,屬于簡單題目.15、【解析】
以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數(shù)量積的坐標運算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:【點睛】本題考查了向量數(shù)量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.16、【解析】
判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)見解析.【解析】
(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,,求出數(shù)陣經(jīng)過變化后的矩陣,進而可求得的值;(3)分和兩種情況討論,推導出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經(jīng)過變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個,經(jīng)過變換后第一行均變?yōu)?、;含有且不含的子集共個,經(jīng)過變換后第一行均變?yōu)椤?;同時含有和的子集共個,經(jīng)過變換后第一行仍為、;不含也不含的子集共個,經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個,經(jīng)過變換后第一行均變?yōu)椤?;不含有的子集共個,經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.同理,經(jīng)過變換后所有的第二行的所有數(shù)的和為.所以的所有可能取值的和為,又因為、、、,所以的所有可能取值的和不超過.【點睛】本題考查數(shù)陣變換的求法,考查數(shù)陣中四個數(shù)的和不超過的證明,考查類比推理、數(shù)陣變換等基礎知識,考查運算求解能力,綜合性強,難度大.18、(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數(shù)求導,再根據(jù)參數(shù)的取值,討論的正負,即可求出關于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當時,則在單調(diào)遞減,當時,則在單調(diào)遞增,所以,當時,,即,則在上單調(diào)遞增,當時,,易知當時,,當時,,由零點存在性定理知,,不妨設,使得,當時,,即,當時,,即,當時,,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當時等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設,欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【點睛】本題主要考查了導數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.19、(1)(2)【解析】
(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當時,.當時,(最大值)當時,在是增函數(shù),在是減函數(shù).的值域是.【點睛】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識,考查了運算求解能力,屬于中檔題.20、(1);(2)見解析.【解析】
(1)設切點坐標為,然后根據(jù)可解得實數(shù)的值;(2)令,,然后對實數(shù)進行分類討論,結(jié)合和的符號來確定函數(shù)的零點個數(shù).【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數(shù)為增函數(shù);當時,,此時,函數(shù)為減函數(shù).,.①當,即當時,函數(shù)有一個零點;②當,即當時,函數(shù)有兩個零點;③當,即當時,函數(shù)有三個零點;④當,即當時,函數(shù)有兩個零點;⑤當,即當時,函數(shù)只有一個零點.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國小螺絲市場調(diào)查研究報告
- 2025年中國光控端子收料機市場調(diào)查研究報告
- 2025至2031年中國植物導水率高壓測量計行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國馬蹄片數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國里子面料數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國多功能等離子焊機數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國塑料智力玩具數(shù)據(jù)監(jiān)測研究報告
- 二零二五個人向金融機構(gòu)借款合同終止條件合同模板2篇
- 二零二五年度個人現(xiàn)代農(nóng)業(yè)項目股份轉(zhuǎn)讓合同范本2篇
- 二零二五版宣傳費用結(jié)算與審計合同范本2篇
- 道路瀝青工程施工方案
- 2025年度正規(guī)離婚協(xié)議書電子版下載服務
- 《田口方法的導入》課件
- 春節(jié)后安全生產(chǎn)開工第一課
- 2025光伏組件清洗合同
- 內(nèi)陸?zhàn)B殖與水產(chǎn)品市場營銷策略考核試卷
- 電力電纜工程施工組織設計
- 2024年重慶市中考數(shù)學試題B卷含答案
- 醫(yī)生給病人免責協(xié)議書(2篇)
- 票據(jù)業(yè)務居間合同模板
- 承包鋼板水泥庫合同范本(2篇)
評論
0/150
提交評論