![2024屆河南南陽華龍區(qū)高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view12/M08/35/2B/wKhkGWYtiGWAYEvZAAHuxgFfPGA938.jpg)
![2024屆河南南陽華龍區(qū)高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view12/M08/35/2B/wKhkGWYtiGWAYEvZAAHuxgFfPGA9382.jpg)
![2024屆河南南陽華龍區(qū)高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view12/M08/35/2B/wKhkGWYtiGWAYEvZAAHuxgFfPGA9383.jpg)
![2024屆河南南陽華龍區(qū)高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view12/M08/35/2B/wKhkGWYtiGWAYEvZAAHuxgFfPGA9384.jpg)
![2024屆河南南陽華龍區(qū)高級中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view12/M08/35/2B/wKhkGWYtiGWAYEvZAAHuxgFfPGA9385.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆河南南陽華龍區(qū)高級中學(xué)高考仿真卷數(shù)學(xué)試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若樣本的平均數(shù)是10,方差為2,則對于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為82.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.3.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.4.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.5.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.6.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達式為()A. B.C. D.7.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點為,則()A. B. C. D.8.要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.9.設(shè)雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.10.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點為,則不可能為()A. B. C. D.11.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.12.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點對稱C.周期為 D.在上是增函數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.在△ABC中,()⊥(>1),若角A的最大值為,則實數(shù)的值是_______.15.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.16.已知實數(shù)滿足則點構(gòu)成的區(qū)域的面積為____,的最大值為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.18.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當(dāng)時,求(O為坐標(biāo)原點)面積的取值范圍.19.(12分)已知函數(shù).(1)當(dāng)時.①求函數(shù)在處的切線方程;②定義其中,求;(2)當(dāng)時,設(shè),(為自然對數(shù)的底數(shù)),若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.20.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.21.(12分)4月23日是“世界讀書日”,某中學(xué)開展了一系列的讀書教育活動.學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學(xué)生只能參加一個讀書小組)學(xué)生抽取12名學(xué)生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學(xué)生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學(xué)生中隨機抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.22.(10分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.2、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.3、D【解析】
由,可求出等比數(shù)列的通項公式,進而可知當(dāng)時,;當(dāng)時,,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時,;當(dāng)時,,則的最小值為.故選:D.【點睛】本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算求解能力,屬于中檔題.4、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.5、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標(biāo)的關(guān)系,根據(jù)列方程,化簡后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡得,故,設(shè)焦點坐標(biāo)為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關(guān)的幾何性質(zhì),考查運算求解能力,屬于中檔題.6、B【解析】
由圖象的頂點坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點,求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點應(yīng)對應(yīng)正弦曲線中的點,所以,解得,故函數(shù)表達式為.故選:B.【點睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.7、B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】
根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學(xué)都安排在上午;②語文和數(shù)學(xué)一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學(xué)都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學(xué)都一個安排在上午,一個安排在下午.語文和數(shù)學(xué)一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應(yīng)用,涉及分類計數(shù)原理的應(yīng)用,屬于中等題.9、B【解析】
設(shè)雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標(biāo)準(zhǔn)方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標(biāo)準(zhǔn)方程、雙曲線的簡單幾何性質(zhì),要注意雙曲線焦點位置,屬于中檔題.10、D【解析】
依題意,設(shè),由,得,再一一驗證.【詳解】設(shè),因為,所以,經(jīng)驗證不滿足,故選:D.【點睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.11、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.12、D【解析】
當(dāng)時,,∴f(x)不關(guān)于直線對稱;當(dāng)時,,∴f(x)關(guān)于點對稱;f(x)得周期,當(dāng)時,,∴f(x)在上是增函數(shù).本題選擇D選項.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎(chǔ)題.14、1【解析】
把向量進行轉(zhuǎn)化,用表示,利用基本不等式可求實數(shù)的值.【詳解】,解得=1.故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積應(yīng)用,綜合了基本不等式,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉(zhuǎn)與可行域有交點即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當(dāng)時,滿足條件,當(dāng)時,直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運算求解的能力,屬于中檔題.16、811【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標(biāo)函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時,z最大,故.故答案為:;11.【點睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的遞減區(qū)間為和【解析】
(1)化簡函數(shù),代入,計算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.18、(1);(2).【解析】
(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設(shè)橢圓方程為(),則,,,所以曲線C的方程為.(2)設(shè)直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當(dāng)時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關(guān)系從而判斷軌跡,直線與曲線相交一般聯(lián)立設(shè)而不求韋達定理進行求解即可,屬于一般性題目.19、(1)①;②8079;(2).【解析】
(1)①時,,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對任意給定的,,在區(qū)間,上總存在兩個不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因為①,所以②,由①+②得,所以.所以.(2),當(dāng)時,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域為.因為,,故,,①此時,當(dāng)變化時、的變化情況如下:—0+單調(diào)減最小值單調(diào)增∵,,∴對任意給定的,在區(qū)間上總存在兩個不同的,使得成立,當(dāng)且僅當(dāng)滿足下列條件,即令,,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減所以,對任意,有,即②對任意恒成立.由③式解得:④綜合①④可知,當(dāng)時,對任意給定的,在上總存在兩個不同的,使成立.【點睛】本題考查了導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問題,會利用導(dǎo)函數(shù)的正負確定函數(shù)的單調(diào)性,會根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時所滿足的條件.不等式恒成立常轉(zhuǎn)化為函數(shù)最值問題解決.20、(1);(2)【解析】
(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設(shè)出直線方程,聯(lián)立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時,直線的斜率為0,此時(ii)當(dāng)直線的斜率為零時,.(iii)當(dāng)直線的斜率存在且不等于零時,設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標(biāo)分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標(biāo)為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標(biāo)函數(shù)解析式,運用函數(shù)知識求解;本題是難題.21、(1)(2)見解析,【解析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源項目股權(quán)轉(zhuǎn)讓合同書模板
- 2025年度定制化整車物流解決方案合同
- 2025年度網(wǎng)絡(luò)安全防護服務(wù)合同附加條款模板
- 2025年度汽車租賃公司車輛租賃合同
- 2025年度醫(yī)院病房裝修合同協(xié)議書
- 2025年化工項目環(huán)境影響評價咨詢合同范本
- 2025年度護士團隊協(xié)作服務(wù)合同
- 2025年度汽車零部件進口采購合同范本
- 2025年度企業(yè)股票期權(quán)激勵計劃設(shè)計合同
- 2025年度江門市住宅租賃合同標(biāo)準(zhǔn)版
- 房地產(chǎn)調(diào)控政策解讀
- 山東省濟寧市2025屆高三歷史一輪復(fù)習(xí)高考仿真試卷 含答案
- 五年級數(shù)學(xué)(小數(shù)乘法)計算題專項練習(xí)及答案
- 產(chǎn)前診斷室護理工作總結(jié)
- 6S管理知識培訓(xùn)課件
- 2024-2025學(xué)年八年級數(shù)學(xué)人教版上冊寒假作業(yè)(綜合復(fù)習(xí)能力提升篇)(含答案)
- 醫(yī)院培訓(xùn)課件:《猴痘流行病學(xué)特點及中國大陸首例猴痘病例調(diào)查處置》
- 氫氣-安全技術(shù)說明書MSDS
- 2024年社會工作者(中級)-社會綜合能力考試歷年真題可打印
- 湖南省長郡中學(xué)2023-2024學(xué)年高二下學(xué)期寒假檢測(開學(xué)考試)物理 含解析
- JJG646-2006移液器檢定規(guī)程-(高清現(xiàn)行)
評論
0/150
提交評論