版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南農(nóng)業(yè)大學(xué)附屬中學(xué)2024屆高考數(shù)學(xué)五模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個2.設(shè)不等式組,表示的平面區(qū)域?yàn)?,在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.3.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.24.連接雙曲線及的4個頂點(diǎn)的四邊形面積為,連接4個焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線的離心率為()A. B. C. D.5.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-26.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.7.已知集合,則=()A. B. C. D.8.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨(dú)成組,則不同的派遣方案共有()種A. B. C. D.9.已知復(fù)數(shù),則()A. B. C. D.10.已知為拋物線的準(zhǔn)線,拋物線上的點(diǎn)到的距離為,點(diǎn)的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.11.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.812.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,則_________.14.已知定義在上的函數(shù)的圖象關(guān)于點(diǎn)對稱,,若函數(shù)圖象與函數(shù)圖象的交點(diǎn)為,則_____.15.在平面直角坐標(biāo)系中,若雙曲線經(jīng)過點(diǎn)(3,4),則該雙曲線的準(zhǔn)線方程為_____.16.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)△的內(nèi)角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.19.(12分)己知函數(shù).(1)當(dāng)時(shí),求證:;(2)若函數(shù),求證:函數(shù)存在極小值.20.(12分)在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).21.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍.22.(10分)已知是圓:的直徑,動圓過,兩點(diǎn),且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點(diǎn),使得以為直徑的圓恰好與軸相切?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計(jì)算,可得結(jié)果.【詳解】由題可知:,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個數(shù)的計(jì)算,當(dāng)集合中有元素時(shí),集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.2、A【解析】
畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.3、C【解析】
利用等差數(shù)列的性質(zhì)化簡已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.4、D【解析】
先求出四個頂點(diǎn)、四個焦點(diǎn)的坐標(biāo),四個頂點(diǎn)構(gòu)成一個菱形,求出菱形的面積,四個焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點(diǎn)的坐標(biāo)為,四個焦點(diǎn)的坐標(biāo)為,四個頂點(diǎn)形成的四邊形的面積,四個焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.5、B【解析】
由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【點(diǎn)睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.6、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.7、D【解析】
先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以.故選:D【點(diǎn)睛】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.8、C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨(dú)成一組的情況,再將這兩組分配,利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,
又因?yàn)槊刹坎荒軉为?dú)成一組,則不同的派遣方案種數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計(jì)算能力,屬于中等題.9、B【解析】
利用復(fù)數(shù)除法、加法運(yùn)算,化簡求得,再求得【詳解】,故.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的除法運(yùn)算、加法運(yùn)算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.10、B【解析】
設(shè)拋物線焦點(diǎn)為,由題意利用拋物線的定義可得,當(dāng)共線時(shí),取得最小值,由此求得答案.【詳解】解:拋物線焦點(diǎn),準(zhǔn)線,過作交于點(diǎn),連接由拋物線定義,
,
當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取“=”號,∴的最小值為.
故選:B.【點(diǎn)睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.11、A【解析】
由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計(jì)算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點(diǎn)睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.12、B【解析】
根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點(diǎn)睛】本題主要考查對命題真假的判斷以及真值表的應(yīng)用,識記真值表,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.14、4038.【解析】
由函數(shù)圖象的對稱性得:函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對稱,則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點(diǎn)對稱又函數(shù)的圖象關(guān)于點(diǎn)對稱則函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對稱則故,即本題正確結(jié)果:【點(diǎn)睛】本題考查利用函數(shù)圖象的對稱性來求值的問題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對稱中心,屬中檔題.15、【解析】
代入求解得,再求準(zhǔn)線方程即可.【詳解】解:雙曲線經(jīng)過點(diǎn),,解得,即.又,故該雙曲線的準(zhǔn)線方程為:.故答案為:.【點(diǎn)睛】本題主要考查了雙曲線的準(zhǔn)線方程求解,屬于基礎(chǔ)題.16、130.15.【解析】
由題意可得顧客需要支付的費(fèi)用,然后分類討論,將原問題轉(zhuǎn)化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設(shè)顧客一次購買水果的促銷前總價(jià)為元,元時(shí),李明得到的金額為,符合要求.元時(shí),有恒成立,即,即元.所以的最大值為.【點(diǎn)睛】本題主要考查不等式的概念與性質(zhì)?數(shù)學(xué)的應(yīng)用意識?數(shù)學(xué)式子變形與運(yùn)算求解能力,以實(shí)際生活為背景,創(chuàng)設(shè)問題情境,考查學(xué)生身邊的數(shù)學(xué),考查學(xué)生的數(shù)學(xué)建模素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①可能是2件;②詳見解析【解析】
(1)由一件手工藝品質(zhì)量為B級的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點(diǎn)睛】本題考查相互獨(dú)立事件的概率計(jì)算,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計(jì)算求解能力,屬于中檔題.18、(I);(II).【解析】
試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點(diǎn):1、解三角形;2、三角恒等變換.19、(1)證明見解析(2)證明見解析【解析】
(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知;,易知當(dāng)時(shí),,;當(dāng)時(shí),函數(shù)單調(diào)遞增,而,又,由零點(diǎn)存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因?yàn)?,且,故,故函?shù)在上單調(diào)遞減,故.(2)依題意,,令,則;而,可知當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,故當(dāng)時(shí),;當(dāng)時(shí),函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當(dāng)時(shí),,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當(dāng)時(shí),函數(shù)有極小值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),還考查推理論證能力以及函數(shù)與方程思想,屬于難題.20、(1);(2).【解析】
(1)依據(jù)新定義,的定義域和值域都是,且在上單調(diào),建立方程求解;(2)依據(jù)新定義,討論的單調(diào)性,列出方程求解即可?!驹斀狻浚?)當(dāng)時(shí),由復(fù)合函數(shù)單調(diào)性知,在區(qū)間上是增函數(shù),即有,解得;同理,當(dāng)時(shí),有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調(diào)函數(shù),①當(dāng)在上是單調(diào)增函數(shù),則,解得,檢驗(yàn)符合;②當(dāng)在上是單調(diào)減函數(shù),則,解得,在上不是單調(diào)函數(shù),不符合題意。故滿足在區(qū)間上是閉函數(shù)只有。【點(diǎn)睛】本題主要考查學(xué)生的應(yīng)用意識,利用所學(xué)知識分析解決新定義問題。21、(1)或;(2).【解析】
(1)通過討論的范圍,將絕對值符號去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)問題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當(dāng)時(shí),原不等式可化為,解得;當(dāng)時(shí),原不等式可化為,解得,不滿足,舍去;當(dāng)時(shí),原不等式可化為,解得,所以不等式的解集為.(2)因?yàn)椋匀艉瘮?shù)存在零點(diǎn)則可轉(zhuǎn)化為函數(shù)與的圖像存在交點(diǎn),函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知.【點(diǎn)睛】該題考查的是有關(guān)不等式的問題,涉及到的知識點(diǎn)有分類討論求絕對值不等式的解集,將零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)的問題來解決,數(shù)形結(jié)合思想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)直播合作協(xié)議簽約管理辦法
- 民俗別墅租賃協(xié)議
- 劇院常年舞蹈演員招聘合同
- 城市照明挖掘機(jī)租賃協(xié)議
- 賓館物業(yè)維修人員招聘協(xié)議
- 文化遺產(chǎn)翻新施工合同
- 文化場地地暖施工合同模板
- 商場暖氣管道安裝工程施工合同
- 翻譯兼職聘用合同
- 投資合作協(xié)議書
- 2024年廣西職業(yè)院校技能大賽高職組《供應(yīng)鏈管理》賽項(xiàng)樣題-供應(yīng)鏈規(guī)劃設(shè)計(jì)
- 商城系統(tǒng)定制開發(fā)(2024版)合同3篇
- 城市基建豎井施工風(fēng)險(xiǎn)管理方案
- 農(nóng)村宅基地使用證更名協(xié)議書(2篇)
- 小兒咳嗽推拿治療
- 代理記賬員工培訓(xùn)
- 2024年全國保密知識競賽經(jīng)典試題庫附參考答案(綜合題)
- 2024年新疆(兵團(tuán))公務(wù)員考試《行測》真題及答案解析
- 部編版2023-2024學(xué)年六年級上冊語文期末測試試卷(含答案)
- 八上必讀名著《紅星照耀中國》要點(diǎn)梳理與練習(xí)
- 2024年廣西公需科目參考答案
評論
0/150
提交評論