版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省白銀市靖遠(yuǎn)縣第二中學(xué)2023-2024學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.2.博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號(hào)大于第一輛車的車序號(hào),就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號(hào)”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P23.某幾何體的三視圖如圖所示,其中正視圖是邊長(zhǎng)為4的正三角形,俯視圖是由邊長(zhǎng)為4的正三角形和一個(gè)半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.4.如圖,在四邊形中,,,,,,則的長(zhǎng)度為()A. B.C. D.5.設(shè)過定點(diǎn)的直線與橢圓:交于不同的兩點(diǎn),,若原點(diǎn)在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.6.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.7.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個(gè)交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.8.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn),在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.9.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個(gè)表面中任選個(gè),則選取的個(gè)表面互相垂直的概率為()A. B. C. D.10.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.11.已知三棱錐中,為的中點(diǎn),平面,,,則有下列四個(gè)結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時(shí),與平面所成的角的范圍為;④當(dāng)時(shí),為平面內(nèi)一動(dòng)點(diǎn),若OM∥平面,則在內(nèi)軌跡的長(zhǎng)度為1.其中正確的個(gè)數(shù)是().A.1 B.1 C.3 D.412.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____。14.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).15.在中,,.若,則_________.16.邊長(zhǎng)為2的菱形中,與交于點(diǎn)O,E是線段的中點(diǎn),的延長(zhǎng)線與相交于點(diǎn)F,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若,,證明:.18.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.19.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對(duì)數(shù)的底,k為常數(shù))有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.20.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時(shí),求的零點(diǎn);(2)當(dāng)時(shí),證明:.21.(12分)已知函數(shù)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)a的取值范圍;(2)若函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為和,且,求實(shí)數(shù)a的取值范圍.(e是自然對(duì)數(shù)的底數(shù))22.(10分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時(shí),,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.2、C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點(diǎn)睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個(gè)數(shù),屬于基礎(chǔ)題.3、A【解析】由題意得到該幾何體是一個(gè)組合體,前半部分是一個(gè)高為底面是邊長(zhǎng)為4的等邊三角形的三棱錐,后半部分是一個(gè)底面半徑為2的半個(gè)圓錐,體積為故答案為A.點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長(zhǎng)對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長(zhǎng)是幾何體的長(zhǎng);俯視圖的長(zhǎng)是幾何體的長(zhǎng),寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.4、D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.5、D【解析】
設(shè)直線:,,,由原點(diǎn)在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設(shè)直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點(diǎn)睛】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識(shí)和圓錐曲線與直線交點(diǎn)問題時(shí),通常用直線和圓錐曲線聯(lián)立方程組,通過韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計(jì)算能力,屬于中檔題.6、D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.7、C【解析】
設(shè),則,,,設(shè),根據(jù)化簡(jiǎn)得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.8、C【解析】
根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進(jìn)而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因?yàn)?在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點(diǎn)睛】本題主要考查了橢圓的定義運(yùn)用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.9、A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對(duì)數(shù),再求出四個(gè)面中任選2個(gè)的方法數(shù),從而可計(jì)算概率.【詳解】由已知平面,,可得,從該三棱錐的個(gè)面中任選個(gè)面共有種不同的選法,而選取的個(gè)表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點(diǎn)睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個(gè)數(shù).10、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.11、C【解析】
由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯(cuò)誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯(cuò)誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號(hào).可得的最大值為,即的范圍為,③正確;取中點(diǎn),的中點(diǎn),連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點(diǎn)睛】此題考查立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.12、C【解析】
根據(jù)直線過定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱性,可得結(jié)果.【詳解】由題可知:直線過定點(diǎn)且在是關(guān)于對(duì)稱如圖通過圖像可知:直線與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因?yàn)樗詂os因此.【點(diǎn)睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。14、必要不充分【解析】
先求解直線l1與直線l2平行的等價(jià)條件,然后進(jìn)行判斷.【詳解】“直線l1:與直線l2:平行”等價(jià)于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【點(diǎn)睛】本題主要考查充分必要條件的判定,把已知條件進(jìn)行等價(jià)轉(zhuǎn)化是求解這類問題的關(guān)鍵,側(cè)重考查邏輯推理的核心素養(yǎng).15、【解析】分析:首先設(shè)出相應(yīng)的直角邊長(zhǎng),利用余弦勾股定理得到相應(yīng)的斜邊長(zhǎng),之后應(yīng)用余弦定理得到直角邊長(zhǎng)之間的關(guān)系,從而應(yīng)用正切函數(shù)的定義,對(duì)邊比臨邊,求得對(duì)應(yīng)角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設(shè),則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡(jiǎn)整理得,即,解得,所以,故答案是.點(diǎn)睛:該題考查的是有關(guān)解三角形的問題,在解題的過程中,注意分析要求對(duì)應(yīng)角的正切值,需要求誰,而題中所給的條件與對(duì)應(yīng)的結(jié)果之間有什么樣的連線,設(shè)出直角邊長(zhǎng),利用所給的角的余弦值,利用余弦定理得到相應(yīng)的等量關(guān)系,求得最后的結(jié)果.16、【解析】
取基向量,,然后根據(jù)三點(diǎn)共線以及向量加減法運(yùn)算法則將,表示為基向量后再相乘可得.【詳解】如圖:設(shè),又,且存在實(shí)數(shù)使得,,,,,,故答案為:.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運(yùn)算,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見證明【解析】
(1)利用零點(diǎn)分段法討論去掉絕對(duì)值求解;(2)利用絕對(duì)值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時(shí),不等式可化為.當(dāng)時(shí),,,所以;當(dāng)時(shí),,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點(diǎn)睛】本題主要考查含有絕對(duì)值不等式問題的求解,含有絕對(duì)值不等式的解法一般是使用零點(diǎn)分段討論法.18、(1);(2)1.【解析】
(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2),,由(1)通過計(jì)算得到,即最大值為1.【詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標(biāo)方程為,顯然直線l與曲線C相交的兩點(diǎn)中,必有一個(gè)為原點(diǎn)O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當(dāng),即取時(shí),.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,三角形面積的最值問題,是一道容易題.19、(1);(2)見解析【解析】
(1)求出,記,問題轉(zhuǎn)化為方程有兩個(gè)不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點(diǎn),且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時(shí),,單調(diào)遞減,,時(shí),,單調(diào)遞增,,由題意,方程有兩個(gè)不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,記,則,因?yàn)?,所以,所以時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,因?yàn)椋?,所?即函數(shù)的極大值不小于1.【點(diǎn)睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.20、(1)見解析;(2)證明見解析.【解析】
當(dāng)時(shí),求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計(jì)算即為導(dǎo)函數(shù)的零點(diǎn);
當(dāng)時(shí),分類討論x的范圍,可令新函數(shù),計(jì)算新函數(shù)的最值可證明.【詳解】(1)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育法規(guī)真題練習(xí)試卷B卷附答案
- 2024年光學(xué)纖維面板系列項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 第七章 面談?wù)n件
- “雙減”背景下小學(xué)數(shù)學(xué)作業(yè)設(shè)計(jì)的策略研究實(shí)施方案范文
- 2024年適用職工勞動(dòng)協(xié)議格式文件
- 2024年專業(yè)期貨交易中介服務(wù)協(xié)議
- 揚(yáng)州大學(xué)封志明老師預(yù)測(cè)《導(dǎo)游基礎(chǔ)知識(shí)》模擬試題參考答案
- 設(shè)備設(shè)施運(yùn)行維護(hù)管理方案5篇
- 2024年化工業(yè)品買賣協(xié)議
- 2024閣樓房屋銷售協(xié)議模板
- 2024-2030年中國?;沸袠I(yè)發(fā)展趨勢(shì)與投資前景展望報(bào)告
- 中國企業(yè)投資緬甸光伏發(fā)電市場(chǎng)機(jī)會(huì)分析及戰(zhàn)略規(guī)劃報(bào)告2024-2030年
- 2024年廣東省深圳市中考?xì)v史試題
- 化工(危險(xiǎn)化學(xué)品)企業(yè)主要負(fù)責(zé)人、安管員安全生產(chǎn)管理專項(xiàng)培訓(xùn)考核試卷(附參考答案)
- 2024年人教版小學(xué)三年級(jí)語文(上冊(cè))期中考卷及答案
- 《信息化項(xiàng)目驗(yàn)收工作規(guī)范》
- 2024年全國軟件水平考試之高級(jí)網(wǎng)絡(luò)規(guī)劃設(shè)計(jì)師考試重點(diǎn)黑金模擬題(詳細(xì)參考解析)
- 經(jīng)濟(jì)學(xué)題庫(200道)
- 2024年巴西私人安保服務(wù)市場(chǎng)機(jī)會(huì)及渠道調(diào)研報(bào)告
- 課《聞王昌齡左遷龍標(biāo)遙有此寄》跨學(xué)科公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 2024年江蘇省連云港市中考英語真題(含解析)
評(píng)論
0/150
提交評(píng)論