版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省孝義市九校2023-2024學(xué)年高考數(shù)學(xué)一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.42.已知全集,集合,則()A. B. C. D.3.在中,角所對(duì)的邊分別為,已知,則()A.或 B. C. D.或4.若平面向量,滿足,則的最大值為()A. B. C. D.5.已知角的終邊經(jīng)過(guò)點(diǎn),則A. B.C. D.6.已知集合,,若,則實(shí)數(shù)的值可以為()A. B. C. D.7.若集合,,則()A. B. C. D.8.已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為A.2 B.3 C. D.9.已知i為虛數(shù)單位,則()A. B. C. D.10.函數(shù)的大致圖像為()A. B.C. D.11.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.412.已知為銳角,且,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平行四邊形中,已知,,,若,,則____________.14.已知隨機(jī)變量,且,則______15.已知正項(xiàng)等比數(shù)列中,,則__________.16.在中,已知,則的最小值是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實(shí)數(shù)a;若不能,請(qǐng)說(shuō)明理由.(2)若在處取得極大值,求實(shí)數(shù)a的取值范圍.18.(12分)本小題滿分14分)已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長(zhǎng)度19.(12分)在中,角的對(duì)邊分別為,且滿足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.20.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點(diǎn),且,求的值.21.(12分)已知在中,角,,的對(duì)邊分別為,,,的面積為.(1)求證:;(2)若,求的值.22.(10分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.【點(diǎn)睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.2、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問(wèn)題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.3、D【解析】
根據(jù)正弦定理得到,化簡(jiǎn)得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.4、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡(jiǎn)為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.5、D【解析】因?yàn)榻堑慕K邊經(jīng)過(guò)點(diǎn),所以,則,即.故選D.6、D【解析】
由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點(diǎn)睛】考查描述法表示集合的定義,以及并集的定義及運(yùn)算.7、A【解析】
用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.8、D【解析】
本題首先可以通過(guò)題意畫(huà)出圖像并過(guò)點(diǎn)作垂線交于點(diǎn),然后通過(guò)圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長(zhǎng)度,的長(zhǎng)度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫(huà)出以上圖像,過(guò)點(diǎn)作垂線并交于點(diǎn),因?yàn)?,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)?,,,,所以,三角形是直角三角形,因?yàn)?,所以,,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡(jiǎn)得,,,,故選D?!军c(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。9、A【解析】
根據(jù)復(fù)數(shù)乘除運(yùn)算法則,即可求解.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)運(yùn)算,屬于基礎(chǔ)題題.10、D【解析】
通過(guò)取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.11、A【解析】
則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【點(diǎn)睛】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.12、C【解析】
由可得,再利用計(jì)算即可.【詳解】因?yàn)?,,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對(duì)三角函數(shù)式化簡(jiǎn)求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),則,得到,,利用向量的數(shù)量積的運(yùn)算,即可求解.【詳解】由題意,如圖所示,設(shè),則,又由,,所以為的中點(diǎn),為的三等分點(diǎn),則,,所以.【點(diǎn)睛】本題主要考查了向量的共線定理以及向量的數(shù)量積的運(yùn)算,其中解答中熟記向量的線性運(yùn)算法則,以及向量的共線定理和向量的數(shù)量積的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.14、0.1【解析】
根據(jù)原則,可得,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:隨機(jī)變量,則期望為所以故答案為:【點(diǎn)睛】本題考查正態(tài)分布的計(jì)算,掌握正態(tài)曲線的圖形以及計(jì)算,屬基礎(chǔ)題.15、【解析】
利用等比數(shù)列的通項(xiàng)公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式以及等比中項(xiàng),需熟記公式,屬于基礎(chǔ)題.16、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時(shí)取到等號(hào),故cosC的最小值為.點(diǎn)睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運(yùn)用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)答案見(jiàn)解析(2)【解析】
(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無(wú)實(shí)數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(shè)(),恒大于零.在上單調(diào)遞增.又,,,∴存在唯一,使,且時(shí),時(shí),①當(dāng)時(shí),恒成立,在單調(diào)遞增,無(wú)極值,不合題意.②當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.③當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時(shí)由得即,綜上可知,實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.18、【解析】解:解:將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為,即,它表示以為圓心,2為半徑圓,………4分直線方程的普通方程為,………8分圓C的圓心到直線l的距離,……………10分故直線被曲線截得的線段長(zhǎng)度為.……………14分19、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)運(yùn)用正弦定理和二角和的正弦公式,化簡(jiǎn),即可求出角的大??;(Ⅱ)通過(guò)面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點(diǎn)睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關(guān)系,考查了運(yùn)算能力.20、(1),(2)0【解析】
(1)分別把兩曲線參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線的參數(shù)方程代入的普通方程,化為關(guān)于的一元二次方程,再由根與系數(shù)的關(guān)系及此時(shí)的幾何意義求解.【詳解】(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得;由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得,即.(2)把為參數(shù))代入,得.,..解得:,即,滿足△..【點(diǎn)睛】本題考查參數(shù)方程化普通方程,特別是直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用,是中檔題.21、(1)證明見(jiàn)解析;(2).【解析】
(1)利用,利用正弦定理,化簡(jiǎn)即可證明(2)利用(1),得到當(dāng)時(shí),,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當(dāng)時(shí),.又,∴,∴,∴.【點(diǎn)睛】本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題22、(1)有的把握認(rèn)為是否戴口罩出行的行為與
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代物流信息系統(tǒng)建設(shè)中的標(biāo)準(zhǔn)化問(wèn)題
- 掛繩高空作業(yè)施工方案
- 拆除臨時(shí)用電施工方案
- 生態(tài)文明教育在校園的實(shí)踐與推廣
- 現(xiàn)代企業(yè)綜合管理能力提升及領(lǐng)導(dǎo)力培訓(xùn)方案研究報(bào)告
- 國(guó)慶節(jié)營(yíng)銷活動(dòng)方案模板
- 2023三年級(jí)語(yǔ)文上冊(cè) 第一單元 習(xí)作:猜猜他是誰(shuí)說(shuō)課稿 新人教版
- Unit 2 AnimaIs Lesson 1 Enjoy the story(說(shuō)課稿)-2024-2025學(xué)年北師大版(三起)英語(yǔ)五年級(jí)上冊(cè)
- 2024秋八年級(jí)物理上冊(cè) 第1章 機(jī)械運(yùn)動(dòng) 第2節(jié) 運(yùn)動(dòng)的描述說(shuō)課稿2(新版)新人教版
- 2025仿石漆施工合同
- 中日勞務(wù)合同范本
- 白宮-人工智能行業(yè):美國(guó)人工智能權(quán)利法案藍(lán)圖(英譯中)
- 營(yíng)口市大學(xué)生??紝U锌荚囌骖}2022
- 典范英語(yǔ)8-15Here comes trouble原文翻譯
- 六安市葉集化工園區(qū)污水處理廠及配套管網(wǎng)一期工程環(huán)境影響報(bào)告書(shū)
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第一章運(yùn)動(dòng)技能學(xué)習(xí)與控制概述
- 固體廢棄物檢查記錄
- 工程設(shè)計(jì)費(fèi)取費(fèi)標(biāo)準(zhǔn)
- 2023年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析
- CAPP教學(xué)講解課件
- 自然環(huán)境的服務(wù)功能課件 高中地理人教版(2019)選擇性必修3
評(píng)論
0/150
提交評(píng)論