![2022-2023學(xué)年湖南省懷化市新晃縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第1頁](http://file4.renrendoc.com/view3/M01/0E/3F/wKhkFmYxWXyADRcaAAEjHpwrQog793.jpg)
![2022-2023學(xué)年湖南省懷化市新晃縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第2頁](http://file4.renrendoc.com/view3/M01/0E/3F/wKhkFmYxWXyADRcaAAEjHpwrQog7932.jpg)
![2022-2023學(xué)年湖南省懷化市新晃縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第3頁](http://file4.renrendoc.com/view3/M01/0E/3F/wKhkFmYxWXyADRcaAAEjHpwrQog7933.jpg)
![2022-2023學(xué)年湖南省懷化市新晃縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第4頁](http://file4.renrendoc.com/view3/M01/0E/3F/wKhkFmYxWXyADRcaAAEjHpwrQog7934.jpg)
![2022-2023學(xué)年湖南省懷化市新晃縣八年級(下)期末數(shù)學(xué)試卷(含解析)_第5頁](http://file4.renrendoc.com/view3/M01/0E/3F/wKhkFmYxWXyADRcaAAEjHpwrQog7935.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年湖南省懷化市新晃縣八年級(下)期末數(shù)學(xué)試卷
一、選擇題(每小題4分,共40分)
1.長度如下的各組線段中,不能組成的直角三角形的是()
A.3,4,5B.6,8,12C.1,如,、MD.12,13,5
2.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()
A,盒,B,潴^。
D.
3.如圖,PELAC,垂足分別為。、E,且尸。=尸£,則△APZ)與全等的
直接理由是()
A.SASB.AASC.HLD.ASA
4.如圖,在平行四邊形ABC。中,過點3作BEJ_C。交CO延長線于點E,若NA=40°,
則NEBC的度數(shù)為()
Bc
A.50°B.40°C.70°D.60°
5.如圖,P是矩形ABC。內(nèi)一點,過方的兩直線分別與矩形的邊平行,下列說法不一定成
立的是()
A.S^ABC=S^ADCB.S^AEF=S^ANF
C?S矩形NFGD=S矩形EFMBD.S^AEF=S矩形NFGD
6.菱形ABC。的對角線AC、8。的長分別為6和8,則這個菱形的邊長是()
A.6B.4C.5D.20
7.平面直角坐標(biāo)系中的點A(-3,2)關(guān)于x軸對稱的點的坐標(biāo)是()
A.(3,-2)B.(3,2)C.(-3,2)D.(-3,-2)
8.對于一次函數(shù)y=-2x+6,下列說法正確的是()
A.y的值隨x值的增大而增大
B.其圖象經(jīng)過第二、三、四象限
C.其圖象與x軸的交點為(0,6)
D.其圖象必經(jīng)過點(2,2)
9.順次連結(jié)兩條對角線互相垂直的四邊形各邊中點所得的四邊形必定是()
A.任意四邊形B.矩形C,菱形D.正方形
10.一次函數(shù)>=-依+b與(左,b是常數(shù),且助力0)在同一坐標(biāo)系中的大致圖象是
二、填空題(每小題4分,共24分)
11.函數(shù)了二471-2中,自變量x的取值范圍是
12.八邊形的內(nèi)角和比七邊形的內(nèi)角和多.度?
13.已知點P(3,a-1),且。<1,則P點在第象限.
14.為了了解中學(xué)生的素質(zhì)教育情況,某縣在全縣各中學(xué)共抽取了200名九年級學(xué)生進行素
質(zhì)教育調(diào)查,將所得的數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右
前4個小組的頻率分別是0.04,(M2,0.16,0.4,則第5小組的頻數(shù)是
15.如圖,在四邊形ABC。中,AB=BC=CD=DA,對角線AC與8。相交于點O,若不增
加任何字母與輔助線,要使四邊形ABCD是正方形,則還需增加一個條件
是________________.
16.若直線y=3x+6與坐標(biāo)軸圍成的三角形面積是6,則b=.
三、解答題(共86分)
17.為測得池塘兩岸點A和點8間的距離,一個觀測者在C點設(shè)樁,使NABC=90°,D
是AC中點,并測得8。長6加,8C長8s,求A,8兩點間的距離.
18.已知△ABC,△AEC在如圖所示的網(wǎng)格(每個小正方形的邊長為1)中,△ABC的頂
點A的坐標(biāo)為(-2,1),頂點B的坐標(biāo)為(-1,2).
(1)在網(wǎng)格圖中畫出兩條坐標(biāo)軸,并標(biāo)出坐標(biāo)原點。;寫出A'、B\C三點的坐標(biāo).
(2)作△A8C關(guān)于x軸對稱的△A〃B"C",并求出88〃的長.
19.如圖,在RtZkABC中,ZBAC=90°,E,尸分別是8C,AB的中點,作F£)平行于AE,
交CA延長線于點D,AF與DE交于點0.
(1)求證:四邊形AEFD是平行四邊形;
(2)如果AB=5,BC=13,求平行四邊形AE/切的面積.
20.某校八年級社會實踐小組,為了解2023年某小區(qū)家庭月均用水情況,
隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理,
月均用水量X(噸)頻數(shù)(戶)頻率
0VxW560.12
5c尤W10m0.24
10d5160.32
15VxW20100.20
20VxW254n
25VxW3020.04
請解答以下問題:
(1)求出加,”的值,并把頻數(shù)分布直方圖補充完整;
(2)若該小區(qū)有1000戶家庭,求該小區(qū)月均用水量超過10噸的家庭大約有多少戶?
頻數(shù)(戶)
1;一
0'-----------------------------LIA
51015202530月用水旱:(t)
21.已知一次函數(shù)的圖象經(jīng)過A(0,4)與8(-3,0)兩點.
(1)求這個一次函數(shù)的解析式;
(2)判斷點C(l,春)與點。(3,8)是否在該一次函數(shù)的圖象上.
O
(3)若點E(a,機+2)、F(b,3m)在這個一次函數(shù)的圖象上,且a-b>0,求,"的
取值范圍.
22.如圖,將矩形紙片ABC。沿對角線AC折疊,使點B落到到8的位置,AB'與CD交
于點E.
(1)求證:AE=CE.
(2)若AB=8,DE=3,點尸為線段AC上任意一點,PGLAEG,PHLCD于H.求
尸G+PH的值.
23.已知A、B兩地之間有一條長450km的公路,甲車從A地出發(fā)勻速開往B地,甲車出
發(fā)1小時后,乙車從A地出發(fā),沿同路線勻速追趕甲車,兩車相遇后,乙車原路原速返
回A地.兩車之間的距離y(切7)與甲車行駛時間x(/I)之間的函數(shù)關(guān)系如圖所示,請
解答下列問題:
(1)甲車的速度是km/h,乙車的速度是kmlh,m=;
(2)求相遇后,乙車返回過程中,y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)甲、乙兩車相距100h”時,甲車的行駛路程.
24.如圖,在平面直角坐標(biāo)系中,菱形ABC。的頂點A(-6,8),點C在x軸正半軸上,
對角線AC交y軸于點邊A3交y軸于點動點P從點A出發(fā),以2個單位長度/
秒的速度沿折線A-B-C向終點C運動.
(1)求點B的坐標(biāo).
(2)求對角線AC所在直線的解析式.
(3)設(shè)動點尸的運動時間為f秒,連接PM、BM,△P2M的面積為S,請用含/的式子
表示S;
(4)當(dāng)f=8時,直線AC上是否存在點N,使SANBM=SGBM.若存在,請求出N點的坐
標(biāo);若不存在,請說明理由.
參考答案
一、選擇題(每小題4分,共40分)
1.長度如下的各組線段中,不能組成的直角三角形的是()
A.3,4,5B.6,8,12C.1,加,如D.12,13,5
【分析】欲求證是否為直角三角形,這里給出三邊的長,只要驗證兩小邊的平方和等于
最長邊的平方即可.
解:432+42=52,能組成直角三角形,故本選項不符合題意;
B、62+82W122,不能組成直角三角形,故本選項符合題意;
C、M+(&)2=(%)2,能組成直角三角形,故本選項不符合題意;
。、:122+52=132,能組成直角三角形,故本選項不符合題意.
故選:B.
【點評】本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角
形三邊的長,只要利用勾股定理的逆定理加以判斷即可.勾股定理的逆定理:若三角形
三邊滿足。2+〃=02,那么這個三角形是直角三角形.
2.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()
【分析】根據(jù)中心對稱圖形與軸對稱圖形的概念,進行判斷即可.把一個圖形繞某一點
旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖
形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對
稱圖形.
解:A.該圖形不是中心對稱圖形,是軸對稱圖形,故此選項不合題意;
B.該圖形不是中心對稱圖形,是軸對稱圖形,故此選項不合題意;
C該圖形既是軸對稱圖形又是中心對稱圖形,故此選項符合題意;
D.該圖形不是中心對稱圖形,也不是軸對稱圖形,故此選項不合題意;
故選:C.
【點評】本題考查的是中心對稱圖形與軸對稱圖形的概念,常見的中心對稱圖形有平行
四邊形、圓形、正方形、長方形等等.常見的軸對稱圖形有等腰三角形,矩形,正方形,
等腰梯形,圓等等.
3.如圖,PDLAB,PELAC,垂足分別為。、E,且則與全等的
直接理由是()
A.SASB.AASC.HLD.ASA
【分析】根據(jù)題中的條件可得和△APE是直角三角形,再根據(jù)條件尸。=產(chǎn)區(qū)AP
=AP,可根據(jù)HZ,定理判定△APDg
解:-:PD±AB,PELAC,
:.ZAEP=ZADP=9Q°,
在RtAAPD和RtAAP£中,
(PD=PE
lAP=AP,
.?.RtAAPD^RtAAPE(HL),
故選:C.
【點評】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、
ASA,AAS,HL.結(jié)合已知條件在圖形上的位置選擇判定方法.
4.如圖,在平行四邊形A8C。中,過點8作3ELCD交C£)延長線于點E,若/A=40°,
則/EBC的度數(shù)為()
D.60°
【分析】由8ELCD交8延長線于點E,得NE=90°,由平行四邊形的性質(zhì)得NC=
ZA=40°,則NE8C=90°-ZC=90°=50°,于是得到問題的答案.
解:交C。延長線于點E,
.?.ZE=90°,
:四邊形ABC。是平行四邊形,ZA=40°,
.,.ZC=ZA=40°,
:.ZEBC^9Q°-NC=90°-40°=50°,
故選:A.
【點評】此題重點考查平行四邊形的性質(zhì)、直角三角形的兩個銳角互余等知識,根據(jù)平
行四邊形的性質(zhì)求得/C=/A=40°是解題的關(guān)鍵.
5.如圖,尸是矩形ABC。內(nèi)一點,過尸的兩直線分別與矩形的邊平行,下列說法不一定成
立的是()
A.S^ABC=SAADCB.S/^AEF=SAANF
C.S.NFGD=S版彩EFMBD.SAAEF=S正彩NFGD
【分析】根據(jù)矩形的性質(zhì)可判定△ABC和全等,從而可對選項A進行判斷;再根
據(jù)MN〃A8,EG〃BC可得到四邊形AEFN,四邊形NFG。,四邊形MFGC,四邊形EFM3
均為矩形,據(jù)此可對選項2進行判斷;利用選項48成立可對選項C進行判斷;然后
由題目中的已知條件不能證明S£AEF=S矩形NFGD,由此可對選項。進行判斷.
解::四邊形ABC。為矩形,
:.AB=CD,BC=AD,AB//CD,BC//AD,ZB=ZD=ZBAD=ZBCD=9Q°,
在△ABC和△口”中,
AB=CD,BC=AD,/B=/D=90°,
AAABC^ACDA(SAS),
??5AABC=S^ADC>
故選項A成立;
,:MN〃AB,EG//BC,
5LBC//AD,NB=ND=/BAD=/BCD=90°,
四邊形AEFN,四邊形NEG。,四邊形MFGC,四邊形EFM8均為矩形,
由選項A正確得:SMEF=SMNF,S&FMC=SAFCG,
故選項8成立;
S^ABC—SAAEF+S矩形EFMB+S^FMCiSAADC—S^ANF+S矩形NFGB+S^FCG>
S^AEF+SEFMB+S^FMC—S^ANF+S正彩NFGB+S^FCG,
SAAEF—SAANFJSAFMC=SAFCG,
??S矩形EFMBS矩形NFGB,
故選項c成立;
根據(jù)題目中的條件不能得到:S^AEF—S矩形NFGD,
因此選項。不一定成立.
故選:D.
【點評】此題主要考查了矩形的性質(zhì),理解矩形的兩組對邊分別平行且相等,四個角都
是直角是解答此題的關(guān)鍵.
6.菱形ABCD的對角線AC.BD的長分別為6和8,則這個菱形的邊長是()
A.6B.4C.5D.20
【分析】由菱形對角線的性質(zhì),相互垂直平分即可得出菱形的邊長.
解:由菱形對角線性質(zhì)知,AO=—AC=3,BO=—BD=4,B.AO±BO,
22
則AB=VA02+B02=V32+42=5>
故選:c.
【點評】本題考查了菱形的性質(zhì)、勾股定理在直角三角形中的運用;熟練掌握菱形的性
質(zhì)和勾股定理是解題的關(guān)鍵.
7.平面直角坐標(biāo)系中的點A(-3,2)關(guān)于x軸對稱的點的坐標(biāo)是()
A.(3,-2)B.(3,2)C.(-3,2)D.(-3,-2)
【分析】根據(jù)關(guān)于x軸對稱的點的坐標(biāo)特征,即可解答.
解:點A(-3,2)關(guān)于x軸對稱的點的坐標(biāo)為(-3,-2),
故選:D.
【點評】本題考查了關(guān)于x軸、y軸對稱的點的坐標(biāo),熟練掌握關(guān)于x軸、y軸對稱的點
的坐標(biāo)特征是解題的關(guān)鍵.
8.對于一次函數(shù)y=-2x+6,下列說法正確的是()
A.y的值隨x值的增大而增大
B.其圖象經(jīng)過第二、三、四象限
C.其圖象與x軸的交點為(0,6)
D.其圖象必經(jīng)過點(2,2)
【分析】根據(jù)一次函數(shù)圖象的性質(zhì)進行逐一分析解答即可.
解:A.:-2<0,
...一次函數(shù)y=-2x+6的圖象y隨尤的增大而減小,故本選項錯誤,不符合題意;
B.:-2<0,6>0,
.?.一次函數(shù)>=-2x+6的圖象在一、二、四象限,故本選項錯誤,不符合題意;
C.當(dāng)y=0時,0=-2尤+6,解得尤=3,
.?.一次函數(shù)y=-2x+6的圖象與無軸交于點(3,0),故本選項錯誤,不符合題意;
D.■/x=2時,y=-2無+6=2,
函數(shù)圖象必經(jīng)過點(2,2),故本選項正確,符合題意.
故選:D.
【點評】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征,一次函數(shù)的圖象與性質(zhì),一次函數(shù)
圖象與系數(shù)的關(guān)系,都是基礎(chǔ)知識,需熟練掌握.
9.順次連結(jié)兩條對角線互相垂直的四邊形各邊中點所得的四邊形必定是()
A.任意四邊形B.矩形C.菱形D.正方形
【分析】根據(jù)三角形中位線的性質(zhì),可得到這個四邊形是平行四邊形,再由對角線垂直,
能證出有一個角等于90°,則這個四邊形為矩形.
解:是矩形,理由如下:
如圖,ACLBD,E、F、G、H分別為各邊的中點,連接點£、F、G、H.
;E、F、G、”分別為各邊的中點,
:.EF//AC,GH//AC,EH//BD,FG//BD(三角形的中位線平行于第三邊),
...四邊形E/G”是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形),
'JACLBD,EF//AC,EH//BD,
:.ZEMO=ZENO=90°,
四邊形EMON是矩形(有三個角是直角的四邊形是矩形),
AZMEN=90°,
???四邊形E/GH是矩形(有一個角是直角的平行四邊形是矩形).
故選:B.
【點評】本題考查了中點四邊形三角形的中位線定理的應(yīng)用,熟練掌握三角形中位線定
理以及矩形的各種判定方法是解題關(guān)鍵.
10.一次函數(shù)y=-辰+Z?與(女,b是常數(shù),且助W0)在同一坐標(biāo)系中的大致圖象是
【分析】根據(jù)一次函數(shù)的圖象與系數(shù)的關(guān)系,由一次函數(shù)>=-丘+。圖象分析可得依b
的符號,進而可得kb的符號,再根據(jù)正比例函數(shù)圖象與系數(shù)的關(guān)系,可以判斷y=kbx
紅助的符號,進而比較可得答案.
解:A、由一次函數(shù)y=-日+/?圖象可知左<0,b<0,kb>0;正比例函數(shù)的圖象
可知妨V0,矛盾,故此選項錯誤;
B、由一次函數(shù)y=-依+/?圖象可知ZV0,/?>0,即必V0;正比例函數(shù)的圖象可
知助V0,一致,故此選項正確;
。、由一次函數(shù)y=-辰+6圖象可知%>0,Z?<0,即助V0;正比例函數(shù)的圖象
可知的>0,矛盾,故此選項錯誤;
D、由一次函數(shù)y=-辰+。圖象可知ZVO,Z?>0,即妨V0;正比例函數(shù)的圖象
可知妨>0,矛盾,故此選項錯誤;
故選:B.
【點評】本題主要考查了一次函數(shù)圖象,解題的關(guān)鍵是掌握一次函數(shù)-kx+b的圖象
有四種情況:①當(dāng)左>0,b>0,函數(shù)的圖象經(jīng)過第一、二、三象限;②當(dāng)上>0,
b<0f函數(shù)>=履+/?的圖象經(jīng)過第一、三、四象限;③當(dāng)左V0,6〉0時,函數(shù)、=丘+8
的圖象經(jīng)過第一、二、四象限;④當(dāng)上<0,/?V0時,函數(shù)y=Ax+Z?的圖象經(jīng)過第二、三、
四象.
二、填空題(每小題4分,共24分)
11.函數(shù)y=GI-2中,自變量x的取值范圍是尤21.
【分析】根據(jù)二次根式有意義的條件列出不等式,解不等式得到答案.
解:由題意得:x-120,
解得:G1,
故答案為:
【點評】本題考查的是函數(shù)自變量的取值范圍的確定,熟記二次根式的被開方數(shù)是非負(fù)
數(shù)是解題的關(guān)鍵.
12.八邊形的內(nèi)角和比七邊形的內(nèi)角和多180度.
【分析】利用多邊形的內(nèi)角和公式分別計算八邊形和七邊形的內(nèi)角和,作差即可.
解::八邊形的內(nèi)角和為(8-2)X1800=1080°,
七邊形的內(nèi)角和為(7-2)X1800=900°,
A1080°-900°=180°,
故答案為:180.
【點評】本題考查了多邊形的內(nèi)角和,解題的關(guān)鍵是熟練掌握多邊形內(nèi)角和公式(n-2)
180°.
13.己知點P(3,a-1),且。<1,則P點在第四象限.
【分析】根據(jù)各象限內(nèi)點的坐標(biāo)特征解答.
解:':a<l,
:.a-KO,
點尸(3,a-1)在第四象限.
故答案為:四.
【點評】本題考查了點的坐標(biāo),記住各象限內(nèi)點的坐標(biāo)的符號是解決的關(guān)鍵,四個象限
的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第
四象限(+,-).
14.為了了解中學(xué)生的素質(zhì)教育情況,某縣在全縣各中學(xué)共抽取了200名九年級學(xué)生進行素
質(zhì)教育調(diào)查,將所得的數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右
則第5小組的頻數(shù)是56
【分析】此題只需根據(jù)各小組頻率之和等于1,求得第5組的頻率;
再根據(jù)頻率=頻數(shù)+總數(shù),求得頻數(shù)=頻率X總數(shù).
解:根據(jù)題意,得
第5小組的頻率是1-(0.04+0.12+0.16+0.4)=0.28,
則第5小組的頻數(shù)是200X0.28=56.
【點評】本題是對頻率、頻數(shù)靈活運用的綜合考查.
注意:各小組頻數(shù)之和等于數(shù)據(jù)總和,各小組頻率之和等于L
15.如圖,在四邊形A8C。中,AB=8C=CO=ZM,對角線AC與8。相交于點O,若不增
加任何字母與輔助線,要使四邊形ABCD是正方形,則還需增加一個條件是AC=BD
或ABL8C.
【分析】根據(jù)菱形的判定定理及正方形的判定定理即可解答.
解:?.?在四邊形A8CD中,AB=BC=CD=DA
,四邊形ABCD是菱形
要使四邊形是正方形,則還需增加一個條件是:AC=BD^AB1BC.
【點評】解答此題的關(guān)鍵是熟練掌握正方形的判定定理,即有一個角是直角的菱形是正
方形.
16.若直線y=3x+Z?與坐標(biāo)軸圍成的三角形面積是6,則人=±6.
【分析】由直線y=3x+b與坐標(biāo)軸圍成的三角形面積是6,得bWO,則6>0或b<0,故
需分這兩種情況討論.
解:???直線y=3x+。與坐標(biāo)軸圍成的三角形面積是6,
當(dāng)y=0時,3x+6=0,故x=《,則A(一0),此時。4='.
2
ASAA0B=2OA'0B=7'b=V=6'
.?.Z?=6或/?=-6(不合題意,故舍去).
②當(dāng)8V0時,y=3x+b的圖象如圖2.
當(dāng)y=0時,3x+6=0,故彳=一|,則A(夸,0),此時。4=-與
S^AOB詠AOB卷,(音)?Qb)=6,
:.b=6(不合題意,故舍去)或6=-6.
綜上:b—±6.
故答案為:士6.
【點評】本題主要考查一次函數(shù)圖象上點的坐標(biāo)的特征以及三角形面積,熟練掌握一次
函數(shù)圖象上點的坐標(biāo)的特征以及三角形面積公式是解決本題的關(guān)鍵.
三、解答題(共86分)
17.為測得池塘兩岸點A和點8間的距離,一個觀測者在C點設(shè)樁,使NABC=90°,D
是AC中點,并測得8。長6加,BC長8s,求A,8兩點間的距離.
【分析】為直角三角形A3C的中線,所以AC=2B。,然后在直角三角形ABC中AC
=12cm,根據(jù)勾股定理即可求得A8的長.
解:VZABC=90°,2。是AC中線,BD=6cm,
.".AC=2BD=12cm,
BC—Scm,
根據(jù)勾股定理可得:AB=A/AC2-BC2=4V5(?!ǎ?
【點評】本題考查了解直角三角形,及勾股定理和直角三角形斜邊上的中線等斜邊的一
半,熟悉條件理解各量之間的數(shù)量關(guān)系是解決問題的關(guān)鍵.
18.已知△ABC,在如圖所示的網(wǎng)格(每個小正方形的邊長為1)中,AABC的頂
點A的坐標(biāo)為(-2,1),頂點B的坐標(biāo)為(-1,2).
(1)在網(wǎng)格圖中畫出兩條坐標(biāo)軸,并標(biāo)出坐標(biāo)原點。;寫出A'、B\C三點的坐標(biāo).
(2)作△ABC關(guān)于x軸對稱的△?!"B"C",并求出86〃的長.
【分析】(1)易得y軸在A的右邊2個單位,x軸在A的下方1個單位;
(2)作出A,B,C三點關(guān)于y軸對稱的三點,順次連接即可;
(3)根據(jù)所在象限及距離坐標(biāo)軸的距離根據(jù)勾股定理可得出.
解:(1)坐標(biāo)軸,坐標(biāo)原點。如圖所示;A'的坐標(biāo)為(2,1),31的坐標(biāo)為(1,2),
C的坐標(biāo)為(3,3);
(2)AA,ZB"C"如圖所示:BB"=如2+&2=2疾.
【點評】本題考查軸對稱作圖問題.用到的知識點:圖象的變換,看關(guān)鍵點的變換即可.
19.如圖,在Rt^ABC中,ZBAC=90°,E,尸分別是BC,AB的中點,作FD平行于AE,
交CA延長線于點D,AF與DE交于點O.
(1)求證:四邊形是平行四邊形;
(2)如果AB=5,BC=13,求平行四邊形AEFO的面積.
【分析】(1)由三角形中位線定理得斯〃AC,AC=2EF,再證A£)=ER即可得出結(jié)
論;
(2)由勾股定理得AC=12,則EF=6=A。,再求出AB的長,即可解決問題.
【解答】(1)證明:尸分別是8C,AC的中點,
;.£尸是△ABC的中位線,
:.EF//AC,AC=2EF,
,:AC^2AD,
:.AD=EF,
四邊形AEFD是平行四邊形;
(2)解:在RtZXABC中,ZBAC=90°,AB=5,BC=13,
???ACWI/RR,
?'-EF-|-AC=6=AD>
15
???AFJAB-1,
VZBAC=90",
:.AD±AF,
平行四邊形AEFD的面積=AD?AF=6X2=15.
2
【點評】本題考查了平行四邊形的判定與性質(zhì)、三角形中位線定理、勾股定理等知識,
熟練掌握平行四邊形的判定與性質(zhì)是解題的關(guān)鍵.
20.某校八年級社會實踐小組,為了解2023年某小區(qū)家庭月均用水情況,
隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理,
月均用水量X(噸)頻數(shù)(戶)頻率
0VxW560.12
5VxW10m0.24
10<xW15160.32
15VxW20100.20
204W254n
25VxW3020.04
請解答以下問題:
(1)求出加,"的值,并把頻數(shù)分布直方圖補充完整;
(2)若該小區(qū)有1000戶家庭,求該小區(qū)月均用水量超過10噸的家庭大約有多少戶?
【分析】(1)先求出調(diào)查的總?cè)藬?shù),再將調(diào)查的總?cè)藬?shù)乘以5<xW10組的頻率,即可
求出m;將20<x<25組的頻數(shù)除以調(diào)查的總?cè)藬?shù)即可求出n;并把頻數(shù)分布直方圖補充
完整即可;
(2)將樣本中用水量超過10噸的家庭的頻率乘以1000,即可估計出該小區(qū)月均用水量
超過10噸的家庭大約有多少戶.
解:(1):調(diào)查的總?cè)藬?shù)為:64-0.12=50,
“2=50X0.24=12,
4
n=----=0.08;
50
頻數(shù)分布直方圖補充如下:
51015202530月用水旱:(t)
(2)用水量超過10噸的家庭大約有:1000X(0.32+0.20+0.08+0.04)=640(戶),
答:該小區(qū)月均用水量超過10噸的家庭大約有640戶.
【點評】本題考查頻數(shù)分布表,頻數(shù)分布直方圖,用樣本估計總體,能從頻數(shù)分布表中
獲取有用信息是解題的關(guān)鍵.
21.已知一次函數(shù)的圖象經(jīng)過A(0,4)與B(-3,0)兩點.
(1)求這個一次函數(shù)的解析式;
(2)判斷點C(l,卷)與點D(3,8)是否在該一次函數(shù)的圖象上.
(3)若點E(a,7M+2)>F(b,3m)在這個一次函數(shù)的圖象上,且a-b>0,求用的
取值范圍.
【分析】(1)設(shè)函數(shù)的解析式為y=fcv+b,運用待定系數(shù)法求出hb的值即可得到這個
一次函數(shù)的解析式;
(2)把點C(l,言)與點。(3,8)代入關(guān)系式看是否成立即可;
(3)利用一次函數(shù)圖象的增減性即可得出〃,+2>3相,解得即可.
解:(1)設(shè)一次函數(shù)為y=fcc+6,把A(0,4)與8(-3,0)代入得
(b=4
l-3k+b=0,
解得:『3,
b=4
這個一次函數(shù)的解析式為>=告尤+4;
O
(2)點C不在直線上,點。在直線上,
理由如下:
當(dāng)x=l時,尸恭1+4=學(xué),C(1,弓)不在直線上,
OOO
4.
當(dāng)%=3時,y=^X3+4=8,D(3,8)在直線上;
O
4
(3),??仁蕓〉0,
3
隨x的增大而增大.
,:點E(〃,機+2)、F(Z?,3m)在這個一次函數(shù)的圖象上,且〃-。>0,
:.d>b,
m+2>3m,
.\m<l.
【點評】本題考查待定系數(shù)法求函數(shù)解析式,一次函數(shù)圖象上點的坐標(biāo)的特征,一次函
數(shù)的性質(zhì),由待定系數(shù)法正確得出函數(shù)解析式是解決問題的關(guān)鍵.
22.如圖,將矩形紙片ABC。沿對角線AC折疊,使點8落到到3的位置,AB'與CD交
于點E.
(1)求證:AE=CE.
(2)若AB=8,OE=3,點P為線段AC上任意一點,PGLAE于G,PH_LCD于H.求
PG+PH的值.
【分析】(1)根據(jù)折疊的性質(zhì),可得NEAC=/C4B,根據(jù)平行線的性質(zhì)可得
/CAB,即可得NEAC=/Z)C4,根據(jù)等腰三角形的判定可求AE=C£;
(2)連接PE,根據(jù)三角形的面積公式計算.
【解答】(1)證明:,??將矩形紙片ABC。沿對角線AC折疊,使點2落到點次的位置,
:.ZEAC=ZCAB,
9
:CD//ABf
:.ZDCA=ZCAB,
:.ZEAC=ZDCAf
:.AE=CE;
(2)解:如圖,連接產(chǎn)區(qū)
:.CE=S-3=5=AE,
-'-AD=VAE2-DE2=4,
S^AEP+S^ECP=S^ECA,
:.—XAEXPG+—XECXPH^-XECXAD,
222
:.PG+PH=AD^4.
【點評】本題主要考查的是翻折的性質(zhì)、矩形的性質(zhì)、等腰三角形的判定,利用面積求
得尸G+PH是解題的關(guān)鍵.
23.已知A、B兩地之間有一條長450加7的公路,甲車從A地出發(fā)勻速開往B地,甲車出
發(fā)1小時后,乙車從A地出發(fā),沿同路線勻速追趕甲車,兩車相遇后,乙車原路原速返
回A地.兩車之間的距離y(km)與甲車行駛時間x(/7)之間的函數(shù)關(guān)系如圖所示,請
解答下列問題:
(1)甲車的速度是75km1h,乙車的速度是125kmM,m=4;
(2)求相遇后,乙車返回過程中,y與尤之間的函數(shù)關(guān)系式;
(3)當(dāng)甲、乙兩車相距10051時,甲車的行駛路程.
【分析】(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),可以先計算出甲車的速度,再根據(jù)2小時
時兩車相遇可以計算出乙車的速度,然后根據(jù)乙車原路原速返回A地,可以寫出根的值;
(2)根據(jù)(1)中的結(jié)果,可以寫出當(dāng)x=機時對應(yīng)的y的值,從而可以求出乙車返回過
程中,y與x之間的函數(shù)關(guān)系式;
(3)將y=100代入(2)中的函數(shù)解析式,求出相應(yīng)的尤的值,再根據(jù)路程=速度X時
間解答即可.
解:(1)由圖象可得,
甲車的速度為:75+1=75(km/h),
乙車的速度為:75X2.3+(2.5-1)=125(W/i),
m—2.5+(2.5-1)=2+1.5=4,
故答案為:75,125,4;
(2)當(dāng)x=4時,y=1.5X(75+125)=300,
設(shè)兩邊相遇后,乙車在返回過程中,y與x的函數(shù)表達式為y=fcv+b,
[2.5k+b=0
把(2.5,0),(4,300)代入得:14k+b=300
(k=200
解得;
lb=-500
.-.y=200x-500(2.5WxW4);
(3)當(dāng)y=100時,100=200x-500,
解得:尤=3,
3X75=225(km),
甲車的行駛路程為:225km.
【點評】本題考查了一次函數(shù)的應(yīng)用,從函數(shù)圖象中獲取解答本題的信息是解題的關(guān)鍵,
用到的數(shù)學(xué)思想是數(shù)形結(jié)合的思想.
24.如圖,在平面直角坐標(biāo)系中,菱形ABC。的頂點A(-6,8),點C在x軸正半軸上,
對角線AC交y軸于點邊交y軸于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國動態(tài)圖像分析儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國自動粉末噴涂系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球可生物降解微膠囊解決方案行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球生物分析測試行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國高壓清洗機噴槍行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 幼兒園科學(xué)討論活動概述模塊二幼兒園科學(xué)探究活動講解
- 必殺08 第九、十單元 西半球的國家和極地地區(qū)(綜合題20題)(解析版)
- 猜想02 重難點(70道題25個重難點)【考題猜想】(解析版)
- 2025我國合同法對合同效力的規(guī)定
- 合法的房屋租賃合同
- 2024至2030年中國餐飲管理及無線自助點單系統(tǒng)數(shù)據(jù)監(jiān)測研究報告
- 2024年服裝門店批發(fā)管理系統(tǒng)軟件項目可行性研究報告
- 體育概論(第二版)課件第三章體育目的
- 《氓》教學(xué)設(shè)計 2023-2024學(xué)年統(tǒng)編版高中語文選擇性必修下冊
- 化學(xué)元素周期表注音版
- T-GDASE 0042-2024 固定式液壓升降裝置安全技術(shù)規(guī)范
- 消防維保服務(wù)方案及實施細則
- 香港朗文4B單詞及句子
- 運動技能學(xué)習(xí)與控制課件第五章運動中的中樞控制
- 財務(wù)部規(guī)范化管理 流程圖
- 斷絕關(guān)系協(xié)議書范文參考(5篇)
評論
0/150
提交評論