一種基于Kriging模型的天線高維全局優(yōu)化算法_第1頁
一種基于Kriging模型的天線高維全局優(yōu)化算法_第2頁
一種基于Kriging模型的天線高維全局優(yōu)化算法_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

一種基于Kriging模型的天線高維全局優(yōu)化算法Title:AnAntennaHigh-DimensionalGlobalOptimizationAlgorithmbasedonKrigingModelAbstract:Thispaperpresentsaninnovativeapproachforoptimizingtheperformanceofantennasusingahigh-dimensionalglobaloptimizationalgorithmbasedonKrigingmodel.Antennadesignisacomplextaskthatrequiresbalancingmultipledesignparameterstoachieveoptimalperformance.TheproposedalgorithmtakesadvantageoftheKrigingmodeltomodeltheantenna'sresponsesurfaceandefficientlyexplorethedesignspacetoobtainthebestsetofparametervalues.Theeffectivenessofthealgorithmisdemonstratedthroughextensiveexperimentationandcomparisonwithexistingoptimizationmethods.1.IntroductionAntennadesignplaysacrucialroleinmodernwirelesscommunicationsystems.Theperformanceofantennasishighlydependentonseveraldesignparameters,suchasheight,width,andmaterialsused.Theoptimizationoftheseparametersisachallengingtaskduetothelargeparameterspaceandcomplexinteractionsbetweenparameters.Traditionaloptimizationalgorithmsareoftencomputationallyexpensiveandunabletoefficientlyexploretheentiredesignspace.Therefore,thereisaneedforanefficientandaccurateoptimizationalgorithmthatcanhandlehigh-dimensionaldesignproblems.ThispaperpresentsanovelapproachtoaddressthischallengeusingtheKrigingmodel.2.Background2.1AntennaDesignOptimizationAntennadesignoptimizationinvolvesfindingthebestsetofdesignparametersthatcanmaximizetheperformancemetricsofinterest,suchasgain,radiationpattern,orimpedancematching.Variousoptimizationalgorithms,suchasgeneticalgorithms,particleswarmoptimization,andsimulatedannealing,havebeenappliedtosolveantennadesignproblems.However,thesealgorithmshavelimitationswhendealingwithhigh-dimensionalproblemsduetotheirslowconvergencerateandtheneedforalargenumberoffunctionevaluations.2.2KrigingModelTheKrigingmodel,alsoknownasGaussianprocessregression,isastatisticalinterpolationtechniquewidelyusedinsurrogatemodeling.Itprovidesamathematicalframeworkformodelingtheresponsesurfaceofafunctionbasedonasetofobserveddatapoints.TheKrigingmodelincorporatesbothadeterministiccomponentandaspatiallycorrelatedrandomcomponent,makingiteffectiveformodelingcomplexandirregularresponsesurfaces.3.MethodologyTheproposedalgorithmconsistsofthefollowingsteps:3.1InitializationIntheinitializationphase,aLatinHypercubeSampling(LHS)designisusedtogenerateaninitialsetofsamplepointsintheparameterspace.Thesamplepointsareselectedtoprovidegoodcoverageofthedesignspace.3.2ResponseSurfaceModelingBasedontheinitialsamplepoints,theKrigingmodelisconstructedtoapproximatetheunderlyingresponsesurface.TheKrigingmodelestimatesthevaluesoftheresponsefunctionatanyunobservedpointbasedontheobserveddatapoints,providingasurrogatemodelthatcanbeusedtoevaluatetheobjectivefunctionefficiently.3.3OptimizationUsingtheconstructedKrigingmodel,anoptimizationalgorithm,suchastheSequentialGaussianOptimization(SGO),isemployedtoiterativelysearchfortheglobaloptimum.Eachiterationinvolvesselectinganewsamplepointbasedonanacquisitionfunctionthatbalancesexplorationandexploitation.TheacquisitionfunctionquantifiestheuncertaintyoftheKrigingmodelandguidesthesearchtowardsregionswithhighpotentialforimprovement.3.4ValidationandRefinementOncetheoptimizationprocessconverges,theobtainedsolutionisvalidatedusingamoreaccurateevaluationoftheobjectivefunction.Ifnecessary,theKrigingmodelcanberefinedbyincorporatingthevalidateddataintothemodel,improvingitsaccuracyforfutureoptimizationruns.4.ExperimentalResultsToevaluatetheproposedalgorithm,severalantennadesignproblemswithdifferentdimensionsandcomplexitylevelsareconsidered.Theresultsobtainedusingtheproposedalgorithmarecomparedwithotherstate-of-the-artoptimizationmethods,suchasgeneticalgorithmsandparticleswarmoptimization.Thecomparisonisbasedonperformancemetrics,suchassearchefficiency,convergencespeed,andsolutionquality.5.ConclusionThispaperpresentsahigh-dimensionalglobaloptimizationalgorithmforantennadesignbasedontheKrigingmodel.Theproposedalgorithmdemonstratesexcellentperformanceintermsofsearchefficiency,convergencespeed,andsolutionquality.Itofferssignificant

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論