下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一種針對(duì)高維優(yōu)化問題的混合人工蜂群算法Title:AHybridArtificialBeeColonyAlgorithmforHigh-DimensionalOptimizationProblemsAbstract:Optimizationproblemsinhigh-dimensionalspacesposesignificantchallengestotraditionaloptimizationalgorithmsduetotheincreasedsearchspaceandcomplexity.Swarmintelligencealgorithms,suchastheArtificialBeeColony(ABC)algorithm,haveshownpromiseinsolvingsuchproblems.However,theperformanceoftheoriginalABCalgorithmtendstodeteriorateasthedimensionalityoftheproblemincreases.Inthispaper,weproposeahybridArtificialBeeColonyalgorithmtoaddressthehigh-dimensionaloptimizationproblemsbyincorporatinglocalsearchandadaptiveoperatorselection.Theproposedalgorithm,namedABC-Hybrid,aimstoimprovetheexplorationandexploitationabilitiesoftheoriginalABCalgorithmtoachievebettersolutionqualityandconvergencespeed.ExperimentalresultsonbenchmarkfunctionsdemonstratethatABC-HybridoutperformstheoriginalABCalgorithmandotherstate-of-the-artoptimizationalgorithmsintermsofsolutionqualityandconvergencespeed.1.IntroductionHigh-dimensionaloptimizationproblemscommonlyariseinvariousfields,includingengineeringdesign,machinelearning,anddatamining.Thecurseofdimensionalitymakesitchallengingfortraditionaloptimizationalgorithmstoefficientlysearchfortheglobaloptimainthevastsearchspace.Swarmintelligencealgorithmshavegainedpopularityfortheirabilitytohandlecomplexandhigh-dimensionaloptimizationproblems.TheOriginalABCalgorithminspiredbytheforagingbehaviorofhoneybeesdemonstratesgoodperformanceforsolvingoptimizationproblems.However,theexplorationabilityoftheABCalgorithmdecreaseswithincreasingdimensions,leadingtoreducedconvergencespeedandsolutionquality.Toovercometheselimitations,thispaperproposesahybridABCalgorithmthatcombineslocalsearchandadaptiveoperatorselectiontoenhancetheperformanceoftheABCalgorithminhigh-dimensionalspaces.2.ArtificialBeeColonyAlgorithmThissectionprovidesabriefoverviewoftheoriginalABCalgorithm,includingtheemployedmodel,employedbees,onlookerbees,andscoutbees.Thealgorithmisbasedontheforagingbehaviorofhoneybeesandusesaheuristicsearchmechanismtoexplorethesolutionspace.3.LimitationsoftheOriginalABCAlgorithminHigh-DimensionalSpacesInhigh-dimensionaloptimizationproblems,theperformanceoftheABCalgorithmdeterioratesduetotheincreasedsearchspaceandreducedexplorationability.ThissectiondiscussesthespecificlimitationsoftheoriginalABCalgorithminhighdimensionsandthereasonsbehindthem.4.ProposedABC-HybridAlgorithmTheABC-HybridalgorithmaimstoovercomethelimitationsoftheoriginalABCalgorithminhigh-dimensionalspaces.Itincorporateslocalsearchtechniques,suchashill-climbingandsimulatedannealing,toimproveexplorationandexploitationabilities.Inaddition,adaptiveoperatorselectionisintroducedtodynamicallyadjusttheexplorationandexploitationbalance.ThissectiondescribesthekeycomponentsandstepsoftheABC-Hybridalgorithm.5.ExperimentalSetupToevaluatetheperformanceoftheABC-Hybridalgorithm,asetofbenchmarkfunctionscommonlyusedinhigh-dimensionaloptimizationproblemsisemployed.Thissectionpresentstheexperimentalsetup,includingparametersettings,probleminstances,andperformanceevaluationmetrics.6.ExperimentalResultsTheexperimentalresultscomparetheperformanceoftheproposedABC-HybridalgorithmwiththeoriginalABCalgorithmandotherstate-of-the-artoptimizationalgorithms.TheresultsdemonstratethattheABC-Hybridalgorithmachievesbettersolutionqualityandfasterconvergencespeedinhigh-dimensionaloptimizationproblems.7.DiscussionandAnalysisThissectionprovidesacomprehensivediscussionandanalysisoftheexperimentalresults.ItdiscussesthestrengthsandweaknessesoftheABC-Hybridalgorithm,aswellaspotentialareasforfurtherimprovement.8.ConclusionTheproposedABC-Hybridalgorithmoffersapromisingsolutionfortacklinghigh-dimensionaloptimizationproblems.Bycombininglocalsearchtechniquesandadaptiveoperatorselection,thealgorithmdemonstratesimprovedexplorationandexploitationabilities.ExperimentalresultsshowthattheABC-HybridalgorithmoutperformstheoriginalABCalgorithmandotheroptimizationalgorithmsonbenchmarkfunctions.Futureresearchshouldfocusonfurtherenhancingthealgorithm'sperformanceandapplyingittoreal-worldapplications.9.ReferencesThissectioncontainsthereferencescitedthroughoutthepaper,includingrelevantworksonswarmintelligence,high-dimensionaloptimization,andtheoriginalABCalgorithm.Overall,thispaperintroducesahybridArtificialBeeColonyalgorithm,namedABC-Hybrid,toaddresshigh-dimensionaloptimizationproblems.Byincorporatinglocalsearchtechniquesandadaptiveoperatorselecti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年09月山東2024年中國光大銀行煙臺(tái)分行秋季校園招考筆試歷年參考題庫附帶答案詳解
- 2024年09月2024華夏銀行北京分行校園招聘筆試歷年參考題庫附帶答案詳解
- 2024年08月恒豐銀行青島分行社會(huì)招考1名工作人員筆試歷年參考題庫附帶答案詳解
- 專業(yè)培訓(xùn)人事工作者
- 泌尿系結(jié)石病人護(hù)理
- 二級(jí)安全評(píng)價(jià)師培訓(xùn)
- 人員管理方案商業(yè)
- 安監(jiān)知識(shí)競賽
- 2024年08月浙江2024屆寧波銀行永贏租賃秋季校園招考筆試歷年參考題庫附帶答案詳解
- 2025至2031年中國微電腦PH/ORP控制器行業(yè)投資前景及策略咨詢研究報(bào)告
- 《礦區(qū)水文地質(zhì)工程地質(zhì)勘探規(guī)范》水文地質(zhì)單元及侵蝕基準(zhǔn)面劃分的探討
- PAC人流術(shù)后關(guān)愛與健康教育
- 眼瞼衰老機(jī)制與干預(yù)
- 滲透檢測(cè)-滲透檢測(cè)方法(無損檢測(cè)課件)
- 職業(yè)健康管理與法律法規(guī)培訓(xùn)
- 銷售合同補(bǔ)充協(xié)議書范本
- 加油站加油機(jī)更換施工方案
- 《中國華電集團(tuán)公司火電項(xiàng)目前期工作管理辦法》
- 初三九年級(jí)英語英語英語語法填空附答案附解析
- 呆滯品管理制度范本(3篇)
- GB/T 42623-2023安裝于辦公、旅館和住宅建筑的乘客電梯的配置和選擇
評(píng)論
0/150
提交評(píng)論