一種針對(duì)高維優(yōu)化問題的混合人工蜂群算法_第1頁
一種針對(duì)高維優(yōu)化問題的混合人工蜂群算法_第2頁
一種針對(duì)高維優(yōu)化問題的混合人工蜂群算法_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一種針對(duì)高維優(yōu)化問題的混合人工蜂群算法Title:AHybridArtificialBeeColonyAlgorithmforHigh-DimensionalOptimizationProblemsAbstract:Optimizationproblemsinhigh-dimensionalspacesposesignificantchallengestotraditionaloptimizationalgorithmsduetotheincreasedsearchspaceandcomplexity.Swarmintelligencealgorithms,suchastheArtificialBeeColony(ABC)algorithm,haveshownpromiseinsolvingsuchproblems.However,theperformanceoftheoriginalABCalgorithmtendstodeteriorateasthedimensionalityoftheproblemincreases.Inthispaper,weproposeahybridArtificialBeeColonyalgorithmtoaddressthehigh-dimensionaloptimizationproblemsbyincorporatinglocalsearchandadaptiveoperatorselection.Theproposedalgorithm,namedABC-Hybrid,aimstoimprovetheexplorationandexploitationabilitiesoftheoriginalABCalgorithmtoachievebettersolutionqualityandconvergencespeed.ExperimentalresultsonbenchmarkfunctionsdemonstratethatABC-HybridoutperformstheoriginalABCalgorithmandotherstate-of-the-artoptimizationalgorithmsintermsofsolutionqualityandconvergencespeed.1.IntroductionHigh-dimensionaloptimizationproblemscommonlyariseinvariousfields,includingengineeringdesign,machinelearning,anddatamining.Thecurseofdimensionalitymakesitchallengingfortraditionaloptimizationalgorithmstoefficientlysearchfortheglobaloptimainthevastsearchspace.Swarmintelligencealgorithmshavegainedpopularityfortheirabilitytohandlecomplexandhigh-dimensionaloptimizationproblems.TheOriginalABCalgorithminspiredbytheforagingbehaviorofhoneybeesdemonstratesgoodperformanceforsolvingoptimizationproblems.However,theexplorationabilityoftheABCalgorithmdecreaseswithincreasingdimensions,leadingtoreducedconvergencespeedandsolutionquality.Toovercometheselimitations,thispaperproposesahybridABCalgorithmthatcombineslocalsearchandadaptiveoperatorselectiontoenhancetheperformanceoftheABCalgorithminhigh-dimensionalspaces.2.ArtificialBeeColonyAlgorithmThissectionprovidesabriefoverviewoftheoriginalABCalgorithm,includingtheemployedmodel,employedbees,onlookerbees,andscoutbees.Thealgorithmisbasedontheforagingbehaviorofhoneybeesandusesaheuristicsearchmechanismtoexplorethesolutionspace.3.LimitationsoftheOriginalABCAlgorithminHigh-DimensionalSpacesInhigh-dimensionaloptimizationproblems,theperformanceoftheABCalgorithmdeterioratesduetotheincreasedsearchspaceandreducedexplorationability.ThissectiondiscussesthespecificlimitationsoftheoriginalABCalgorithminhighdimensionsandthereasonsbehindthem.4.ProposedABC-HybridAlgorithmTheABC-HybridalgorithmaimstoovercomethelimitationsoftheoriginalABCalgorithminhigh-dimensionalspaces.Itincorporateslocalsearchtechniques,suchashill-climbingandsimulatedannealing,toimproveexplorationandexploitationabilities.Inaddition,adaptiveoperatorselectionisintroducedtodynamicallyadjusttheexplorationandexploitationbalance.ThissectiondescribesthekeycomponentsandstepsoftheABC-Hybridalgorithm.5.ExperimentalSetupToevaluatetheperformanceoftheABC-Hybridalgorithm,asetofbenchmarkfunctionscommonlyusedinhigh-dimensionaloptimizationproblemsisemployed.Thissectionpresentstheexperimentalsetup,includingparametersettings,probleminstances,andperformanceevaluationmetrics.6.ExperimentalResultsTheexperimentalresultscomparetheperformanceoftheproposedABC-HybridalgorithmwiththeoriginalABCalgorithmandotherstate-of-the-artoptimizationalgorithms.TheresultsdemonstratethattheABC-Hybridalgorithmachievesbettersolutionqualityandfasterconvergencespeedinhigh-dimensionaloptimizationproblems.7.DiscussionandAnalysisThissectionprovidesacomprehensivediscussionandanalysisoftheexperimentalresults.ItdiscussesthestrengthsandweaknessesoftheABC-Hybridalgorithm,aswellaspotentialareasforfurtherimprovement.8.ConclusionTheproposedABC-Hybridalgorithmoffersapromisingsolutionfortacklinghigh-dimensionaloptimizationproblems.Bycombininglocalsearchtechniquesandadaptiveoperatorselection,thealgorithmdemonstratesimprovedexplorationandexploitationabilities.ExperimentalresultsshowthattheABC-HybridalgorithmoutperformstheoriginalABCalgorithmandotheroptimizationalgorithmsonbenchmarkfunctions.Futureresearchshouldfocusonfurtherenhancingthealgorithm'sperformanceandapplyingittoreal-worldapplications.9.ReferencesThissectioncontainsthereferencescitedthroughoutthepaper,includingrelevantworksonswarmintelligence,high-dimensionaloptimization,andtheoriginalABCalgorithm.Overall,thispaperintroducesahybridArtificialBeeColonyalgorithm,namedABC-Hybrid,toaddresshigh-dimensionaloptimizationproblems.Byincorporatinglocalsearchtechniquesandadaptiveoperatorselecti

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論