云南省昆明市2024年中考數(shù)學四模試卷含解析_第1頁
云南省昆明市2024年中考數(shù)學四模試卷含解析_第2頁
云南省昆明市2024年中考數(shù)學四模試卷含解析_第3頁
云南省昆明市2024年中考數(shù)學四模試卷含解析_第4頁
云南省昆明市2024年中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省昆明市2024年中考數(shù)學四模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平行四邊形ABCD中,AC與BD相交于O,且AO=BD=4,AD=3,則△BOC的周長為()A.9 B.10 C.12 D.142.若關(guān)于x的一元二次方程x2-2x-k=0沒有實數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-13.二元一次方程組的解為()A. B. C. D.4.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數(shù)式中,能構(gòu)成完全平方式的概率是()A.1B.12C.135.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體6.如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關(guān)于OE所在直線對稱D.O、E兩點關(guān)于CD所在直線對稱7.我國古代數(shù)學著作《九章算術(shù)》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設(shè)有x人合買,這件物品y元,則根據(jù)題意列出的二元一次方程組為()A. B. C. D.8.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°9.一元二次方程的根的情況是()A.有一個實數(shù)根 B.有兩個相等的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根10.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm二、填空題(本大題共6個小題,每小題3分,共18分)11.已知一組數(shù)據(jù)1,2,x,2,3,3,5,7的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是.12.圓柱的底面半徑為1,母線長為2,則它的側(cè)面積為_____.(結(jié)果保留π)13.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應(yīng)點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.14.如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_______米(結(jié)果保留根號).15.圖中是兩個全等的正五邊形,則∠α=______.16.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點D、E分別為AM、AB上的動點,則BD+DE的最小值是_____.三、解答題(共8題,共72分)17.(8分)山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:每千克核桃應(yīng)降價多少元?在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?18.(8分)解不等式組:,并把解集在數(shù)軸上表示出來.19.(8分)如圖,AB=AD,AC=AE,BC=DE,點E在BC上.求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.20.(8分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);

(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?

(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變?。ㄌ睢白兇蟆薄ⅰ白冃 被颉安蛔儭保?1.(8分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F(xiàn)如圖①,連接AD,若,求∠B的大小;如圖②,若點F為的中點,的半徑為2,求AB的長.22.(10分)甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:(1)甲登山上升的速度是每分鐘米,乙在地時距地面的高度為米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式.(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?23.(12分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數(shù)的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數(shù)的解析式;(1)求三角形CDE的面積.24.如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關(guān)于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

利用平行四邊形的性質(zhì)即可解決問題.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周長=3+2+4=9,故選:A.【點睛】題考查了平行四邊形的性質(zhì)和三角形周長的計算,平行四邊形的性質(zhì)有:平行四邊形對邊平行且相等;平行四邊形對角相等,鄰角互補;平行四邊形對角線互相平分.2、C【解析】試題分析:由題意可得根的判別式,即可得到關(guān)于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關(guān)鍵是熟練掌握一元二次方程,當時,方程有兩個不相等實數(shù)根;當時,方程的兩個相等的實數(shù)根;當時,方程沒有實數(shù)根.3、C【解析】

利用加減消元法解這個二元一次方程組.【詳解】解:①-②2,得:y=-2,將y=-2代入②,得:2x-2=4,解得,x=3,所以原方程組的解是.故選C.【點睛】本題考查了解二元一次方程組和解一元一次方程等知識點,解此題的關(guān)鍵是把二元一次方程組轉(zhuǎn)化成一元一次方程,題目比較典型,難度適中.4、B【解析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構(gòu)成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.5、A【解析】

根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.6、D【解析】試題分析:A、連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據(jù)作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據(jù)作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關(guān)于OE所在直線對稱,正確,不符合題意.D、根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關(guān)于CD所在直線不對稱,錯誤,符合題意.故選D.7、D【解析】

根據(jù)題意可以找出題目中的等量關(guān)系,列出相應(yīng)的方程組,從而可以解答本題.【詳解】由題意可得:,故選D.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.8、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對應(yīng)角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).9、D【解析】試題分析:△=22-4×4=-12<0,故沒有實數(shù)根;故選D.考點:根的判別式.10、A【解析】

過點P作PD⊥OB于D,根據(jù)角平分線上的點到角的兩邊距離相等可得PC=PD,再根據(jù)垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質(zhì),垂線段最短的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.1【解析】試題分析:∵數(shù)據(jù)1,2,x,2,3,3,1,7的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)的中位數(shù)是(2+3)÷2=2.1;故答案為2.1.考點:1、眾數(shù);2、中位數(shù)12、4【解析】

根據(jù)圓柱的側(cè)面積公式,計算即可.【詳解】圓柱的底面半徑為r=1,母線長為l=2,則它的側(cè)面積為S側(cè)=2πrl=2π×1×2=4π.故答案為:4π.【點睛】題考查了圓柱的側(cè)面積公式應(yīng)用問題,是基礎(chǔ)題.13、或【解析】分析:依據(jù)△DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,△CDM是直角三角形;當∠CMD=90°時,△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長.詳解:分兩種情況:①如圖,當∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.14、一4【解析】

分析:利用特殊三角函數(shù)值,解直角三角形,AM=MD,再用正切函數(shù),利用MB求CM,作差可求DC.【詳解】因為∠MAD=45°,AM=4,所以MD=4,因為AB=8,所以MB=12,因為∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【點睛】本題考查了解直角三角形的應(yīng)用,熟練掌握三角函數(shù)的相關(guān)定義以及變形是解題的關(guān)鍵.15、108°【解析】

先求出正五邊形各個內(nèi)角的度數(shù),再求出∠BCD和∠BDC的度數(shù),求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個全等的正五邊形,∴正五邊形每個內(nèi)角的度數(shù)是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點睛】本題考查了正多邊形和多邊形的內(nèi)角和外角,能求出各個角的度數(shù)是解此題的關(guān)鍵.16、8【解析】試題分析:過B點作于點,與交于點,根據(jù)三角形兩邊之和小于第三邊,可知的最小值是線的長,根據(jù)勾股定理列出方程組即可求解.過B點作于點,與交于點,設(shè)AF=x,,,,(負值舍去).故BD+DE的值是8故答案為8考點:軸對稱-最短路線問題.三、解答題(共8題,共72分)17、(1)4元或6元;(2)九折.【解析】

解:(1)設(shè)每千克核桃應(yīng)降價x元.根據(jù)題意,得(60﹣x﹣40)(100+×20)=2240,化簡,得x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃應(yīng)降價4元或6元.(2)由(1)可知每千克核桃可降價4元或6元.∵要盡可能讓利于顧客,∴每千克核桃應(yīng)降價6元.此時,售價為:60﹣6=54(元),.答:該店應(yīng)按原售價的九折出售.18、x≥【解析】分析:分別求解兩個不等式,然后按照不等式的確定方法求解出不等式組的解集,然后表示在數(shù)軸上即可.詳解:,由①得,x>﹣2;由②得,x≥,故此不等式組的解集為:x≥.在數(shù)軸上表示為:.點睛:本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關(guān)鍵.19、(1)詳見解析;(2)詳見解析.【解析】

(1)用“SSS”證明即可;(2)借助全等三角形的性質(zhì)及角的和差求出∠DAB=∠EAC,再利用三角形內(nèi)角和定理求出∠DEB=∠DAB,即可說明∠EAC=∠DEB.【詳解】解:(1)在△ABC和△ADE中∴△ABC≌△ADE(SSS);(2)由△ABC≌△ADE,則∠D=∠B,∠DAE=∠BAC.∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.設(shè)AB和DE交于點O,∵∠DOA=BOE,∠D=∠B,∴∠DEB=∠DAB.∴∠EAC=∠DEB.【點睛】本題主要考查了全等三角形的判定和性質(zhì),解題的關(guān)鍵是利用全等三角形的性質(zhì)求出相等的角,體現(xiàn)了轉(zhuǎn)化思想的運用.20、(1)8,6和9;(2)甲的成績比較穩(wěn)定;(3)變小【解析】

(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;

(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進行比較,即可得出答案;

(3)根據(jù)方差公式進行求解即可.【詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;

在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;

故答案為8,6和9;

(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,

則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均數(shù)是:(6+6+9+9+10)÷5=8,

則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成績比較穩(wěn)定;

(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變小.

故答案為變?。军c睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術(shù)平均數(shù)、中位數(shù)和眾數(shù).21、(1)∠B=40°;(2)AB=6.【解析】

(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD

,即可求得∠CAD=∠ADO

,繼而求得答案;

(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD

,由點F為弧AD的中點,易得△AOF是等邊三角形,繼而求得答案.【詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點F為弧AD的中點,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【點睛】本題考查了切線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),弧弦圓心角的關(guān)系,等邊三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì).熟練掌握切線的性質(zhì)是解(1)的關(guān)鍵,證明△AOF為等邊三角形是解(2)的關(guān)鍵.22、(1)10;1;(2);(3)4分鐘、9分鐘或3分鐘.【解析】

(1)根據(jù)速度=高度÷時間即可算出甲登山上升的速度;根據(jù)高度=速度×時間即可算出乙在A地時距地面的高度b的值;(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×時間即可得出y關(guān)于x的函數(shù)關(guān)系;(3)當乙未到終點時,找出甲登山全程中y關(guān)于x的函數(shù)關(guān)系式,令二者做差等于50即可得出關(guān)于x的一元一次方程,解之即可求出x值;當乙到達終點時,用終點的高度-甲登山全程中y關(guān)于x的函數(shù)關(guān)系式=50,即可得出關(guān)于x的一元一次方程,解之可求出x值.綜上即可得出結(jié)論.【詳解】(1)(10-100)÷20=10(米/分鐘),b=3÷1×2=1.故答案為:10;1.(2)當0≤x≤2時,y=3x;當x≥2時,y=1+10×3(x-2)=1x-1.當y=1x-1=10時,x=2.∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為.(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=10x+100(0≤x≤20).當10x+100-(1x-1)=50時,解得:x=4;當1x-1-(10x+100)=50時,解得:x=9;當10-(10x+100)=50時,解得:x=3.答:登山4分鐘、9分鐘或3分鐘時,甲、乙兩人距地面的高度差為50米.【點睛】本題考查了一次函數(shù)的應(yīng)用以及解一元一次方程,解題的關(guān)鍵是:(1)根據(jù)數(shù)量關(guān)系列式計算;(2)根據(jù)高度=初始高度+速度×時間找出y關(guān)于x的函數(shù)關(guān)系式;(3)將兩函數(shù)關(guān)系式做差找出關(guān)于x的一元一次方程.23、(1);(1)11.【解析】

(1)根據(jù)正切的定義求出OA,證明△BAO∽△BEC,根據(jù)相似三角形的性質(zhì)計算;(1)求出直線AB的解析式,解方程組求出點D的坐標,根據(jù)三角形CDE的面積=三角形CBE的面積+三角形BED的面積計算即可.【詳解】解:(1)∵tan∠ABO=,OB=4,∴OA=1,∵OE=1,∴BE=6,∵AO∥CE,∴△BAO∽△BEC,∴=,即=,解得,CE=3,即點C的坐標為(﹣1,3),∴反比例函數(shù)的解析式為:;(1)設(shè)直線AB的解析式為:y=kx+b,則,解得,,則直線AB的解析式為:,,解得,,,∴當D的坐標為(6,1),∴三角形C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論