山東省臨沂市蘭陵縣市級名校2023-2024學年中考數學對點突破模擬試卷含解析_第1頁
山東省臨沂市蘭陵縣市級名校2023-2024學年中考數學對點突破模擬試卷含解析_第2頁
山東省臨沂市蘭陵縣市級名校2023-2024學年中考數學對點突破模擬試卷含解析_第3頁
山東省臨沂市蘭陵縣市級名校2023-2024學年中考數學對點突破模擬試卷含解析_第4頁
山東省臨沂市蘭陵縣市級名校2023-2024學年中考數學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省臨沂市蘭陵縣市級名校2023-2024學年中考數學對點突破模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下列計算中,錯誤的是()A.; B.; C.; D..2.共享單車已經成為城市公共交通的重要組成部分,某共享單車公司經過調查獲得關于共享單車租用行駛時間的數據,并由此制定了新的收費標準:每次租用單車行駛a小時及以內,免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統(tǒng)計量是此次調查所得數據的()A.平均數 B.中位數 C.眾數 D.方差3.如圖,點P(x,y)(x>0)是反比例函數y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變4.下列四個實數中是無理數的是()A.2.5B.1035.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.6.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7.若一元二次方程x2﹣2x+m=0有兩個不相同的實數根,則實數m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<18.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n9.小麗只帶2元和5元的兩種面額的鈔票(數量足夠多),她要買27元的商品,而商店不找零錢,要她剛好付27元,她的付款方式有()種.A.1 B.2 C.3 D.410.下列各數3.1415926,,,,,中,無理數有()A.2個 B.3個 C.4個 D.5個二、填空題(本大題共6個小題,每小題3分,共18分)11.從正n邊形一個頂點引出的對角線將它分成了8個三角形,則它的每個內角的度數是______.12.因式分解:_______________.13.電子跳蚤游戲盤是如圖所示的△ABC,AB=AC=BC=1.如果跳蚤開始時在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3=BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數),則點P2016與點P2017之間的距離為_________.14.如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為.15.已知一粒米的質量是1.111121千克,這個數字用科學記數法表示為__________.16.如圖所示,數軸上點A所表示的數為a,則a的值是____.三、解答題(共8題,共72分)17.(8分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉過程中,AD′和BE′有怎樣的數量關系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結果保留根號)18.(8分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關于x的函數關系式;(3)連結OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).19.(8分)如圖,在平面直角坐標系中,拋物線的圖象經過和兩點,且與軸交于,直線是拋物線的對稱軸,過點的直線與直線相交于點,且點在第一象限.(1)求該拋物線的解析式;(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;(3)點在拋物線的對稱軸上,與直線和軸都相切,求點的坐標.20.(8分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.21.(8分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當的降價措施.經調査發(fā)現,每件商品每降價1元,商場平均每天可多售出2件.若某天該商品每件降價3元,當天可獲利多少元?設每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數式表示);在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2000元?22.(10分)已知四邊形ABCD為正方形,E是BC的中點,連接AE,過點A作∠AFD,使∠AFD=2∠EAB,AF交CD于點F,如圖①,易證:AF=CD+CF.(1)如圖②,當四邊形ABCD為矩形時,其他條件不變,線段AF,CD,CF之間有怎樣的數量關系?請寫出你的猜想,并給予證明;(2)如圖③,當四邊形ABCD為平行四邊形時,其他條件不變,線段AF,CD,CF之間又有怎樣的數量關系?請直接寫出你的猜想.圖①圖②圖③23.(12分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).(Ⅰ)求二次函數的解析式及點A,B的坐標;(Ⅱ)設點Q在第一象限的拋物線上,若其關于原點的對稱點Q′也在拋物線上,求點Q的坐標;(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標.24.如圖,已知一次函數y=kx+b的圖象與反比例函數y=8(1)求一次函數的解析式;(2)求ΔAOB的面積。

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:根據零指數冪、有理數的乘方、分數指數冪及負整數指數冪的意義作答即可.詳解:A.,故A正確;B.,故B錯誤;C..故C正確;D.,故D正確;故選B.點睛:本題考查了零指數冪、有理數的乘方、分數指數冪及負整數指數冪的意義,需熟練掌握且區(qū)分清楚,才不容易出錯.2、B【解析】

根據需要保證不少于50%的騎行是免費的,可得此次調查的參考統(tǒng)計量是此次調查所得數據的中位數.【詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統(tǒng)計量是此次調查所得數據的中位數,故選B.【點睛】本題考查了中位數的知識,中位數是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數列的極大或極小值影響,從而在一定程度上提高了中位數對分布數列的代表性。3、D【解析】

作PB⊥OA于B,如圖,根據垂徑定理得到OB=AB,則S△POB=S△PAB,再根據反比例函數k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.4、C【解析】本題主要考查了無理數的定義.根據無理數的定義:無限不循環(huán)小數是無理數即可求解.解:A、2.5是有理數,故選項錯誤;B、103C、π是無理數,故選項正確;D、1.414是有理數,故選項錯誤.故選C.5、C【解析】

連接OD,根據勾股定理求出CD,根據直角三角形的性質求出∠AOD,根據扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關鍵.6、B【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.7、D【解析】分析:根據方程的系數結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數m的取值范圍.詳解:∵方程有兩個不相同的實數根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.8、C【解析】分析:將一般式配方成頂點式,得出對稱軸方程根據拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數的值越大,根據判斷出它們與對稱軸之間的關系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當時,得∵∴∴故選C.點睛:考查二次函數的圖象以及性質,開口向上,距離對稱軸越遠的點,對應的函數值越大,9、C【解析】分析:先根據題意列出二元一次方程,再根據x,y都是非負整數可求得x,y的值.詳解:解:設2元的共有x張,5元的共有y張,由題意,2x+5y=27∴x=(27-5y)∵x,y是非負整數,∴或或,∴付款的方式共有3種.故選C.點睛:本題考查二元一次方程的應用,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程,再根據實際意義求解.10、B【解析】

根據無理數的定義即可判定求解.【詳解】在3.1415926,,,,,中,,3.1415926,是有理數,,,是無理數,共有3個,故選:B.【點睛】本題主要考查了無理數的定義,其中初中范圍內學習的無理數有:等;開方開不盡的數;以及像0.1010010001…,等有這樣規(guī)律的數.二、填空題(本大題共6個小題,每小題3分,共18分)11、144°【解析】

根據多邊形內角和公式計算即可.【詳解】解:由題知,這是一個10邊形,根據多邊形內角和公式:每個內角等于.故答案為:144°.【點睛】此題重點考察學生對多邊形內角和公式的應用,掌握計算公式是解題的關鍵.12、x3(y+1)(y-1)【解析】

先提取公因式x3,再利用平方差公式分解可得.【詳解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案為x3(y+1)(y-1).【點睛】本題主要考查提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握一般整式的因式分解的步驟--先提取公因式,再利用公式法分解.13、3【解析】∵△ABC為等邊三角形,邊長為1,根據跳動規(guī)律可知,

∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…

觀察規(guī)律:當落點腳標為奇數時,距離為3,當落點腳標為偶數時,距離為2,

∵2017是奇數,

∴點P2016與點P2017之間的距離是3.

故答案為:3.【點睛】考查的是等邊三角形的性質,根據題意求出P0P1,P1P2,P2P3,P3P4的值,找出規(guī)律是解答此題的關鍵.14、1.【解析】試題解析:根據題意,將周長為8的△ABC沿邊BC向右平移1個單位得到△DEF,則AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.考點:平移的性質.15、2.1×【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×11-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的1的個數所決定.【詳解】解:1.111121=2.1×11-2.

故答案為:2.1×11-2.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×11-n,其中1≤|a|<11,n由原數左邊起第一個不為零的數字前面的1的個數所決定.16、【解析】

根據數軸上點的特點和相關線段的長,利用勾股定理求出斜邊的長,即知表示0的點和A之間的線段的長,進而可推出A的坐標.【詳解】∵直角三角形的兩直角邊為1,2,∴斜邊長為,那么a的值是:﹣.故答案為.【點睛】此題主要考查了實數與數軸之間的對應關系,其中主要利用了:已知兩點間的距離,求較大的數,就用較小的數加上兩點間的距離.三、解答題(共8題,共72分)17、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】

(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉的性質,即可判斷出△ACD≌△BCE'即可得出結論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結論.【詳解】(1)當CC'=時,四邊形MCND'是菱形.理由:由平移的性質得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當α≠180°時,由旋轉的性質得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關系得,AP<AC+CP,∴當點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質,菱形的性質,平移和旋轉的性質,等邊三角形的判定和性質,勾股定理,解(1)的關鍵是四邊形MCND'是平行四邊形,解(2)的關鍵是判斷出點A,C,P三點共線時,AP最大.18、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】

(1)根據線段的垂直平分線的性質以及垂徑定理證明AG=DG=DH=AH即可;

(2)只要證明△AEF∽△ACB,可得解決問題;

(3)①分三種情形分別求解即可解決問題;

②只要證明△CFG∽△HFA,可得=,求出相應的線段即可解決問題;【詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當點D與O重合時,△AOF是等腰三角形,此時AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當AF=AO時,∵AB==,∴OA=,∵AF==,∴=,解得x=4(負根已經舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當點C與點F重合時,設AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負根已經舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB2=(2+2)π綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;②如圖3中,連接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案為4.【點睛】本題考查圓綜合題、相似三角形的判定和性質、垂徑定理、線段的垂直平分線的性質、菱形的判定和性質、勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會用分類討論的思想思考問題.19、(1);(2);(3)或.【解析】

(1)根據圖象經過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),可利用待定系數法求出二次函數解析式;

(2)根據直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,得出AC,BC的長,得出B點的坐標,即可利用待定系數法求出一次函數解析式;

(3)利用三角形相似求出△ABC∽△PBF,即可求出圓的半徑,即可得出P點的坐標.【詳解】(1)拋物線的圖象經過,,,把,,代入得:解得:,拋物線解析式為;(2)拋物線改寫成頂點式為,拋物線對稱軸為直線,∴對稱軸與軸的交點C的坐標為,,設點B的坐標為,,則,,∴∴點B的坐標為,設直線解析式為:,把,代入得:,解得:,直線解析式為:.(3)①∵當點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,

設⊙P與AB相切于點F,與x軸相切于點C,如圖1;

∴PF⊥AB,AF=AC,PF=PC,

∵AC=1+2=3,BC=4,

∴AB==5,AF=3,

∴BF=2,

∵∠FBP=∠CBA,

∠BFP=∠BCA=90,

∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標為(2,);②設⊙P與AB相切于點F,與軸相切于點C,如圖2:∴PF⊥AB,PF=PC,

∵AC=3,BC=4,AB=5,∵∠FBP=∠CBA,

∠BFP=∠BCA=90,

∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標為(2,-6),綜上所述,與直線和都相切時,或.【點睛】本題考查了二次函數綜合題,涉及到用待定系數法求一函數的解析式、二次函數的解析式及相似三角形的判定和性質、切線的判定和性質,根據題意畫出圖形,利用數形結合求解是解答此題的關鍵.20、(1)坡底C點到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解析】分析:(1)在直角三角形ABC中,利用銳角三角函數定義求出AC的長即可;(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點到大樓距離AC的值是20米.(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關鍵.21、(1)若某天該商品每件降價3元,當天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價1元時,商場日盈利可達到2000元.【解析】

(1)根據“盈利=單件利潤×銷售數量”即可得出結論;

(2)根據“每件商品每降價1元,商場平均每天可多售出2件”結合每件商品降價x元,即可找出日銷售量增加的件數,再根據原來沒見盈利50元,即可得出降價后的每件盈利額;

(3)根據“盈利=單件利潤×銷售數量”即可列出關于x的一元二次方程,解之即可得出x的值,再根據盡快減少庫存即可確定x的值.【詳解】(1)當天盈利:(50-3)×(30+2×3)=1692(元).

答:若某天該商品每件降價3元,當天可獲利1692元.

(2)∵每件商品每降價1元,商場平均每天可多售出2件,

∴設每件商品降價x元,則商場日銷售量增加2x件,每件商品,盈利(50-x)元.

故答案為2x;50-x.

(3)根據題意,得:(50-x)×(30+2x)=2000,

整理,得:x2-35x+10=0,

解得:x1=10,x2=1,

∵商城要盡快減少庫存,

∴x=1.

答:每件商品降價1元時,商場日盈利可達到2000元.【點睛】考查了一元二次方程的應用,解題的關鍵是根據題意找出數量關系列出一元二次方程(或算式).22、(1)圖②結論:AF=CD+CF.(2)圖③結論:AF=CD+CF.【解析】試題分析:(1)作,的延長線交于點.證三角形全等,進而通過全等三角形的對應邊相等驗證之間的關系;(2)延長交的延長線于點由全等三角形的對應邊相等驗證關系.試題解析:(1)圖②結論:證明:作,的延長線交于點.∵四邊形是矩形,由是中點,可證≌(2)圖③結論:延長交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論