武漢地區(qū)十一校2024年中考數(shù)學(xué)猜題卷含解析_第1頁
武漢地區(qū)十一校2024年中考數(shù)學(xué)猜題卷含解析_第2頁
武漢地區(qū)十一校2024年中考數(shù)學(xué)猜題卷含解析_第3頁
武漢地區(qū)十一校2024年中考數(shù)學(xué)猜題卷含解析_第4頁
武漢地區(qū)十一校2024年中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

武漢地區(qū)十一校2024年中考數(shù)學(xué)猜題卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,點(diǎn)A、B在數(shù)軸上表示的數(shù)的絕對(duì)值相等,且,那么點(diǎn)A表示的數(shù)是A. B. C. D.32.一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再從余下的2個(gè)球中任意摸出1個(gè)球則兩次摸到的球的顏色不同的概率為()A. B. C. D.3.如圖,按照三視圖確定該幾何體的側(cè)面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm24.若正比例函數(shù)y=kx的圖象上一點(diǎn)(除原點(diǎn)外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.35.我國(guó)古代數(shù)學(xué)家劉徽用“牟合方蓋”找到了球體體積的計(jì)算方法.“牟合方蓋”是由兩個(gè)圓柱分別從縱橫兩個(gè)方向嵌入一個(gè)正方體時(shí)兩圓柱公共部分形成的幾何體.如圖所示的幾何體是可以形成“牟合方蓋”的一種模型,它的俯視圖是()A. B. C. D.6.下列4個(gè)數(shù):,,π,()0,其中無理數(shù)是()A. B. C.π D.()07.如圖,AB為⊙O的直徑,C、D為⊙O上的點(diǎn),若AC=CD=DB,則cos∠CAD=()A. B. C. D.8.如圖,圖1是由5個(gè)完全相同的正方體堆成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個(gè)幾何體的主視圖相同B.左、右兩個(gè)幾何體的左視圖相同C.左、右兩個(gè)幾何體的俯視圖不相同D.左、右兩個(gè)幾何體的三視圖不相同9.小麗只帶2元和5元的兩種面額的鈔票(數(shù)量足夠多),她要買27元的商品,而商店不找零錢,要她剛好付27元,她的付款方式有()種.A.1 B.2 C.3 D.410.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=11.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點(diǎn),連接DM,若的半徑為2,則MD的長(zhǎng)度為A. B. C.2 D.112.如圖,中,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,使得,延長(zhǎng)交于點(diǎn),則線段的長(zhǎng)為()A.4 B.5 C.6 D.7二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知圓錐的底面半徑為3cm,側(cè)面積為15πcm2,則這個(gè)圓錐的側(cè)面展開圖的圓心角°.14.如圖,△ABC中,AB=BD,點(diǎn)D,E分別是AC,BD上的點(diǎn),且∠ABD=∠DCE,若∠BEC=105°,則∠A的度數(shù)是_____.15.圖①是一個(gè)三角形,分別連接這個(gè)三角形的中點(diǎn)得到圖②;再分別連接圖②中間小三角形三邊的中點(diǎn),得到圖③.按上面的方法繼續(xù)下去,第n個(gè)圖形中有_____個(gè)三角形(用含字母n的代數(shù)式表示).16.如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.17.已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y=圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.18.邊長(zhǎng)為6的正六邊形外接圓半徑是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC中,AB=AC=4,D、E分別為AB、AC的中點(diǎn),連接CD,過E作EF∥DC交BC的延長(zhǎng)線于F;(1)求證:DE=CF;(2)若∠B=60°,求EF的長(zhǎng).20.(6分)如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E在BD的延長(zhǎng)線上,且△EAC是等邊三角形.(1)求證:四邊形ABCD是菱形.(2)若AC=8,AB=5,求ED的長(zhǎng).21.(6分)為了獎(jiǎng)勵(lì)優(yōu)秀班集體,學(xué)校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的單價(jià)各是多少元?若學(xué)校購買5副乒乓球拍和3副羽毛球拍,一共應(yīng)支出多少元?22.(8分)已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣3x+b與拋物線的另一個(gè)交點(diǎn)為D.(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒2323.(8分)二次函數(shù)y=x2﹣2mx+5m的圖象經(jīng)過點(diǎn)(1,﹣2).(1)求二次函數(shù)圖象的對(duì)稱軸;(2)當(dāng)﹣4≤x≤1時(shí),求y的取值范圍.24.(10分)某景區(qū)內(nèi)從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時(shí)間,然后繼續(xù)按原速前往乙地,景區(qū)從甲地開往乙地的電瓶車每隔半小時(shí)發(fā)一趟車,速度是,若小華與第1趟電瓶車同時(shí)出發(fā),設(shè)小華距乙地的路程為,第趟電瓶車距乙地的路程為,為正整數(shù),行進(jìn)時(shí)間為.如圖畫出了,與的函數(shù)圖象.(1)觀察圖,其中,;(2)求第2趟電瓶車距乙地的路程與的函數(shù)關(guān)系式;(3)當(dāng)時(shí),在圖中畫出與的函數(shù)圖象;并觀察圖象,得出小華在休息后前往乙地的途中,共有趟電瓶車駛過.25.(10分)如圖,AB為⊙O的直徑,點(diǎn)C,D在⊙O上,且點(diǎn)C是的中點(diǎn),過點(diǎn)C作AD的垂線EF交直線AD于點(diǎn)E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長(zhǎng).26.(12分)根據(jù)函數(shù)學(xué)習(xí)中積累的知識(shí)與經(jīng)驗(yàn),李老師要求學(xué)生探究函數(shù)y=+1的圖象.同學(xué)們通過列表、描點(diǎn)、畫圖象,發(fā)現(xiàn)它的圖象特征,請(qǐng)你補(bǔ)充完整.(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù)的圖象向上平移個(gè)單位得到;(2)函數(shù)y=+1的圖象與x軸、y軸交點(diǎn)的情況是:;(3)請(qǐng)你構(gòu)造一個(gè)函數(shù),使其圖象與x軸的交點(diǎn)為(2,0),且與y軸無交點(diǎn),這個(gè)函數(shù)表達(dá)式可以是.27.(12分)為了解中學(xué)生“平均每天體育鍛煉時(shí)間”的情況,某地區(qū)教育部門隨機(jī)調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:本次接受隨機(jī)抽樣調(diào)查的中學(xué)生人數(shù)為_______,圖①中m的值是_____;求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);根據(jù)統(tǒng)計(jì)數(shù)據(jù),估計(jì)該地區(qū)250000名中學(xué)生中,每天在校體育鍛煉時(shí)間大于等于1.5h的人數(shù).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

如果點(diǎn)A,B表示的數(shù)的絕對(duì)值相等,那么AB的中點(diǎn)即為坐標(biāo)原點(diǎn).【詳解】解:如圖,AB的中點(diǎn)即數(shù)軸的原點(diǎn)O.

根據(jù)數(shù)軸可以得到點(diǎn)A表示的數(shù)是.

故選:B.【點(diǎn)睛】此題考查了數(shù)軸有關(guān)內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結(jié)合的優(yōu)點(diǎn)確定數(shù)軸的原點(diǎn)是解決本題的關(guān)鍵.2、B【解析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計(jì)算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點(diǎn)睛】掌握分類討論的方法是本題解題的關(guān)鍵.3、A【解析】

由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長(zhǎng)和底面半徑,從而確定其側(cè)面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個(gè)幾何體應(yīng)該是圓錐;根據(jù)三視圖知:該圓錐的母線長(zhǎng)為6cm,底面半徑為8÷1=4cm,故側(cè)面積=πrl=π×6×4=14πcm1.故選:A.【點(diǎn)睛】此題考查學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查.4、B【解析】

設(shè)該點(diǎn)的坐標(biāo)為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征可得出k=±1,再利用正比例函數(shù)的性質(zhì)可得出k=-1,此題得解.【詳解】設(shè)該點(diǎn)的坐標(biāo)為(a,b),則|b|=1|a|,∵點(diǎn)(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及正比例函數(shù)的性質(zhì),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出k=±1是解題的關(guān)鍵.5、A【解析】

根據(jù)俯視圖即從物體的上面觀察得得到的視圖,進(jìn)而得出答案.【詳解】該幾何體的俯視圖是:.故選A.【點(diǎn)睛】此題主要考查了幾何體的三視圖;掌握俯視圖是從幾何體上面看得到的平面圖形是解決本題的關(guān)鍵.6、C【解析】=3,是無限循環(huán)小數(shù),π是無限不循環(huán)小數(shù),,所以π是無理數(shù),故選C.7、D【解析】

根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進(jìn)而求出它的余弦值.【詳解】解:===,故選D.【點(diǎn)睛】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.8、B【解析】

直接利用已知幾何體分別得出三視圖進(jìn)而分析得出答案.【詳解】A、左、右兩個(gè)幾何體的主視圖為:,故此選項(xiàng)錯(cuò)誤;B、左、右兩個(gè)幾何體的左視圖為:,故此選項(xiàng)正確;C、左、右兩個(gè)幾何體的俯視圖為:,故此選項(xiàng)錯(cuò)誤;D、由以上可得,此選項(xiàng)錯(cuò)誤;故選B.【點(diǎn)睛】此題主要考查了簡(jiǎn)單幾何體的三視圖,正確把握觀察的角度是解題關(guān)鍵.9、C【解析】分析:先根據(jù)題意列出二元一次方程,再根據(jù)x,y都是非負(fù)整數(shù)可求得x,y的值.詳解:解:設(shè)2元的共有x張,5元的共有y張,由題意,2x+5y=27∴x=(27-5y)∵x,y是非負(fù)整數(shù),∴或或,∴付款的方式共有3種.故選C.點(diǎn)睛:本題考查二元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再根據(jù)實(shí)際意義求解.10、B【解析】A.y=-4x+5是一次函數(shù),故此選項(xiàng)錯(cuò)誤;B.

y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項(xiàng)正確;C.

y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項(xiàng)錯(cuò)誤;D.

y=是組合函數(shù),故此選項(xiàng)錯(cuò)誤.故選B.11、A【解析】

連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點(diǎn),∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點(diǎn)睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.12、B【解析】

先利用已知證明,從而得出,求出BD的長(zhǎng)度,最后利用求解即可.【詳解】故選:B.【點(diǎn)睛】本題主要考查相似三角形的判定及性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】試題分析:根據(jù)圓錐的側(cè)面積公式S=πrl得出圓錐的母線長(zhǎng),再結(jié)合扇形面積即可求出圓心角的度數(shù).解:∵側(cè)面積為15πcm2,∴圓錐側(cè)面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側(cè)面展開圖的圓心角是1度.故答案為1.考點(diǎn):圓錐的計(jì)算.14、85°【解析】

設(shè)∠A=∠BDA=x,∠ABD=∠ECD=y,構(gòu)建方程組即可解決問題.【詳解】解:∵BA=BD,∴∠A=∠BDA,設(shè)∠A=∠BDA=x,∠ABD=∠ECD=y(tǒng),則有,解得x=85°,故答案為85°.【點(diǎn)睛】本題考查等腰三角形的性質(zhì),三角形的外角的性質(zhì),三角形的內(nèi)角和定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.15、4n﹣1【解析】

分別數(shù)出圖、圖、圖中的三角形的個(gè)數(shù),可以發(fā)現(xiàn):第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去如圖中三角形的個(gè)數(shù)為按照這個(gè)規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個(gè)數(shù),圖中三角形的個(gè)數(shù)為;圖中三角形的個(gè)數(shù)為;圖中三角形的個(gè)數(shù)為;可以發(fā)現(xiàn),第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去1.按照這個(gè)規(guī)律,如果設(shè)圖形的個(gè)數(shù)為n,那么其中三角形的個(gè)數(shù)為.故答案為.【點(diǎn)睛】此題主要考查學(xué)生對(duì)圖形變化類這個(gè)知識(shí)點(diǎn)的理解和掌握,解答此類題目的關(guān)鍵是根據(jù)題目中給出的圖形,數(shù)據(jù)等條件,通過認(rèn)真思考,歸納總結(jié)出規(guī)律,此類題目難度一般偏大,屬于難題.16、10πcm1.【解析】

根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,根據(jù)等腰三角形的性質(zhì)得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=71°,于是得到結(jié)論.【詳解】解:∵AC與BD是⊙O的兩條直徑,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四邊形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴圖中陰影部分的面積=1×=10π,故答案為10πcm1.點(diǎn)睛:本題考查了扇形的面積,矩形的判定和性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),熟練掌握扇形的面積公式是解題的關(guān)鍵.17、(1)-2;(2)【解析】

(1)設(shè)點(diǎn)P的坐標(biāo)為(m,n),則點(diǎn)Q的坐標(biāo)為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數(shù)y=?2x+b中x=0,則y=b,∴BO=b;令一次函數(shù)y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.18、6【解析】

根據(jù)正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,∴邊長(zhǎng)為6的正六邊形外接圓半徑是6,故答案為:6.【點(diǎn)睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明見解析;.【解析】

根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形即可證明;只要求出CD即可解決問題.【詳解】證明:、E分別是AB、AC的中點(diǎn),又四邊形CDEF為平行四邊形.,,又為AB中點(diǎn),在中,,,四邊形CDEF是平行四邊形,.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、勾股定理、三角形的中位線定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.20、(1)證明見解析(2)4-3【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì),可得EO⊥AC,即BD⊥AC,根據(jù)平行四邊形的對(duì)角線互相垂直可證菱形,(2)根據(jù)平行四邊形的對(duì)角線互相平分可得AO=CO,BO=DO,再根據(jù)△EAC是等邊三角形可以判定EO⊥AC,并求出EA的長(zhǎng)度,然后在Rt△ABO中,利用勾股定理列式求出BO的長(zhǎng)度,即DO的長(zhǎng)度,在Rt△AOE中,根據(jù)勾股定理列式求出EO的長(zhǎng)度,再根據(jù)ED=EO-DO計(jì)算即可得解.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AO=CO,DO=BO,∵△EAC是等邊三角形,EO是AC邊上中線,∴EO⊥AC,即BD⊥AC,∴平行四邊形ABCD是是菱形.(2)∵平行四邊形ABCD是是菱形,∴AO=CO==4,DO=BO,∵△EAC是等邊三角形,∴EA=AC=8,EO⊥AC,在Rt△ABO中,由勾股定理可得:BO=3,∴DO=BO=3,在Rt△EAO中,由勾股定理可得:EO=4∴ED=EO-DO=4-3.21、(1)一副乒乓球拍28元,一副羽毛球拍60元(2)共320元.【解析】整體分析:(1)設(shè)購買一副乒乓球拍x元,一副羽毛球拍y元,根據(jù)“購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元”列方程組求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的單價(jià)求解.解:(1)設(shè)購買一副乒乓球拍x元,一副羽毛球拍y元,由題意得,,解得:答:購買一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:購買5副乒乓球拍和3副羽毛球拍共320元.22、(1)y=﹣3(x+3)(x﹣1)=﹣3x2﹣23x+33;(2)(﹣4,﹣153)和(﹣6,﹣37)(3)(1,﹣43【解析】試題分析:(1)根據(jù)二次函數(shù)的交點(diǎn)式確定點(diǎn)A、B的坐標(biāo),求出直線的解析式,求出點(diǎn)D的坐標(biāo),求出拋物線的解析式;(2)作PH⊥x軸于H,設(shè)點(diǎn)P的坐標(biāo)為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據(jù)相似三角形的性質(zhì)計(jì)算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據(jù)正切的定義求出Q的運(yùn)動(dòng)時(shí)間t=BE+EF時(shí),t最小即可.試題解析:(1)∵y=a(x+3)(x﹣1),∴點(diǎn)A的坐標(biāo)為(﹣3,0)、點(diǎn)B兩的坐標(biāo)為(1,0),∵直線y=﹣x+b經(jīng)過點(diǎn)A,∴b=﹣3,∴y=﹣x﹣3,當(dāng)x=2時(shí),y=﹣5,則點(diǎn)D的坐標(biāo)為(2,﹣5),∵點(diǎn)D在拋物線上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)作PH⊥x軸于H,設(shè)點(diǎn)P的坐標(biāo)為(m,n),當(dāng)△BPA∽△ABC時(shí),∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合題意,舍去),當(dāng)m=﹣4時(shí),n=5a,∵△BPA∽△ABC,∴=,即AB2=AC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則n=5a=﹣,∴點(diǎn)P的坐標(biāo)為(﹣4,﹣);當(dāng)△PBA∽△ABC時(shí),∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合題意,舍去),當(dāng)m=﹣6時(shí),n=21a,∵△PBA∽△ABC,∴=,即AB2=BC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則點(diǎn)P的坐標(biāo)為(﹣6,﹣),綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,則tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的運(yùn)動(dòng)時(shí)間t=+=BE+EF,∴當(dāng)BE和EF共線時(shí),t最小,則BE⊥DM,E(1,﹣4).考點(diǎn):二次函數(shù)綜合題.23、(1)x=-1;(2)﹣6≤y≤1;【解析】

(1)根據(jù)拋物線的對(duì)稱性和待定系數(shù)法求解即可;(2)根據(jù)二次函數(shù)的性質(zhì)可得.【詳解】(1)把點(diǎn)(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函數(shù)y=x2﹣2mx+5m的對(duì)稱軸是x=,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴當(dāng)x=﹣1時(shí),y取得最小值﹣6,由表可知當(dāng)x=﹣4時(shí)y=1,當(dāng)x=﹣1時(shí)y=﹣6,∴當(dāng)﹣4≤x≤1時(shí),﹣6≤y≤1.【點(diǎn)睛】本題考查了二次函數(shù)圖象與性質(zhì)及待定系數(shù)法求函數(shù)解析式,熟練掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.24、(1)0.8;2.1;(2);(2)圖像見解析,2【解析】

(1)根據(jù)小華走了4千米后休息了一段時(shí)間和小華的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的時(shí)間,再加上1.5即為b的值;(2)先求出電瓶車的速度,再根據(jù)路程=兩地間距-速度×?xí)r間即可得出答案;(2)結(jié)合的圖象即可畫出的圖象,觀察圖象即可得出答案.【詳解】解:(1),故答案為:0.8;2.1.(2)根據(jù)題意得:電瓶車的速度為∴.(2)畫出函數(shù)圖象,如圖所示.觀察函數(shù)圖象,可知:小華在休息后前往乙地的途中,共有2趟電瓶車駛過.故答案為:2.【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用,能夠從圖象上獲取有效信息是解題的關(guān)鍵.25、(1)證明見解析(2)【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)、平行線的判定得到OC∥AE,得到OC⊥EF,根據(jù)切線的判定定理證明;(2)根據(jù)勾股定理求出AC,證明△AEC∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA=∠BAC,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論