湖北利川文斗2024屆中考數(shù)學(xué)仿真試卷含解析_第1頁(yè)
湖北利川文斗2024屆中考數(shù)學(xué)仿真試卷含解析_第2頁(yè)
湖北利川文斗2024屆中考數(shù)學(xué)仿真試卷含解析_第3頁(yè)
湖北利川文斗2024屆中考數(shù)學(xué)仿真試卷含解析_第4頁(yè)
湖北利川文斗2024屆中考數(shù)學(xué)仿真試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北利川文斗2024屆中考數(shù)學(xué)仿真試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.山西有著悠久的歷史,遠(yuǎn)在100多萬(wàn)年前就有古人類(lèi)生息在這塊土地上.春秋時(shí)期,山西大部分為晉國(guó)領(lǐng)地,故山西簡(jiǎn)稱(chēng)為“晉”,戰(zhàn)國(guó)初韓、趙、魏三分晉,山西又有“三晉”之稱(chēng),下面四個(gè)以“晉”字為原型的Logo圖案中,是軸對(duì)稱(chēng)圖形的共有()A. B. C. D.2.在學(xué)校演講比賽中,10名選手的成績(jī)折線統(tǒng)計(jì)圖如圖所示,則下列說(shuō)法正確的是()A.最高分90 B.眾數(shù)是5 C.中位數(shù)是90 D.平均分為87.53.下列方程中,沒(méi)有實(shí)數(shù)根的是()A. B.C. D.4.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數(shù)為()A.110° B.115° C.120° D.130°5.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開(kāi)若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.下列計(jì)算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x7.已知反比例函數(shù)y=的圖象位于第一、第三象限,則k的取值范圍是()A.k>8 B.k≥8 C.k≤8 D.k<88.下列計(jì)算正確的是()A.(a)=a B.a(chǎn)+a=aC.(3a)?(2a)=6a D.3a﹣a=39.滴滴快車(chē)是一種便捷的出行工具,計(jì)價(jià)規(guī)則如下表:計(jì)費(fèi)項(xiàng)目

里程費(fèi)

時(shí)長(zhǎng)費(fèi)

遠(yuǎn)途費(fèi)

單價(jià)

1.8元/公里

0.3元/分鐘

0.8元/公里

注:車(chē)費(fèi)由里程費(fèi)、時(shí)長(zhǎng)費(fèi)、遠(yuǎn)途費(fèi)三部分構(gòu)成,其中里程費(fèi)按行車(chē)的實(shí)際里程計(jì)算;時(shí)長(zhǎng)費(fèi)按行車(chē)的實(shí)際時(shí)間計(jì)算;遠(yuǎn)途費(fèi)的收取方式為:行車(chē)?yán)锍?公里以內(nèi)(含7公里)不收遠(yuǎn)途費(fèi),超過(guò)7公里的,超出部分每公里收0.8元.

小王與小張各自乘坐滴滴快車(chē),行車(chē)?yán)锍谭謩e為6公里與8.5公里,如果下車(chē)時(shí)兩人所付車(chē)費(fèi)相同,那么這兩輛滴滴快車(chē)的行車(chē)時(shí)間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘10.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.13911.如圖,AB是⊙O的直徑,C,D是⊙O上位于AB異側(cè)的兩點(diǎn).下列四個(gè)角中,一定與∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD12.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.一組數(shù)據(jù)7,9,8,7,9,9,8的中位數(shù)是__________14.如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn).若四邊形EFGH為菱形,則對(duì)角線AC、BD應(yīng)滿足條件_____.15.如圖所示,擺第一個(gè)“小屋子”要5枚棋子,擺第二個(gè)要11枚棋子,擺第三個(gè)要17枚棋子,則擺第30個(gè)“小屋子”要___枚棋子.16.已知一個(gè)多邊形的每一個(gè)外角都等于,則這個(gè)多邊形的邊數(shù)是.17.如圖,△ABC中,過(guò)重心G的直線平行于BC,且交邊AB于點(diǎn)D,交邊AC于點(diǎn)E,如果設(shè)=,=,用,表示,那么=___.18.某十字路口的交通信號(hào)燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)你抬頭看信號(hào)燈時(shí),是綠燈的概率為_(kāi)___.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在△ABC中,AB>AC,點(diǎn)D在邊AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于點(diǎn)E;(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)(2)若BC=5,點(diǎn)D是AC的中點(diǎn),求DE的長(zhǎng).20.(6分)已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點(diǎn),點(diǎn)C在拋物線上且橫坐標(biāo)為1.(1)寫(xiě)出拋物線的函數(shù)表達(dá)式;(2)判斷△ABC的形狀,并證明你的結(jié)論;(3)平面內(nèi)是否存在點(diǎn)Q在直線AB、BC、AC距離相等,如果存在,請(qǐng)直接寫(xiě)出所有符合條件的Q的坐標(biāo),如果不存在,說(shuō)說(shuō)你的理由.21.(6分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過(guò)AC的中點(diǎn)D,E為⊙O上的一點(diǎn),連接DE,BE,DE與AB交于點(diǎn)F.求證:BC為⊙O的切線;若F為OA的中點(diǎn),⊙O的半徑為2,求BE的長(zhǎng).22.(8分)已知a2+2a=9,求的值.23.(8分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).(1)求點(diǎn)B,C的坐標(biāo);(2)判斷△CDB的形狀并說(shuō)明理由;(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.24.(10分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過(guò)計(jì)算,判斷AD2與AC?CD的大小關(guān)系;(2)求∠ABD的度數(shù).25.(10分)如圖,在Rt△ABC中,∠C=90°,AB的垂直平分線交AC于點(diǎn)D,交AB于點(diǎn)E.(1)求證:△ADE~△ABC;(2)當(dāng)AC=8,BC=6時(shí),求DE的長(zhǎng).26.(12分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過(guò)Q作⊙O的切線交射線OA于點(diǎn)E.(1)如圖①,點(diǎn)P在線段OA上,若∠OBQ=15°,求∠AQE的大??;(2)如圖②,點(diǎn)P在OA的延長(zhǎng)線上,若∠OBQ=65°,求∠AQE的大小.27.(12分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)(x<0)的圖象交于點(diǎn)B(﹣2,n),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

根據(jù)軸對(duì)稱(chēng)圖形的概念求解.【詳解】A、不是軸對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤;B、不是軸對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤;C、不是軸對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤;D、是軸對(duì)稱(chēng)圖形,故此選項(xiàng)正確.

故選D.【點(diǎn)睛】此題主要考查了軸對(duì)稱(chēng)圖形的概念,軸對(duì)稱(chēng)圖形的關(guān)鍵是尋找對(duì)稱(chēng)軸,圖形兩部分折疊后可重合.2、C【解析】試題分析:根據(jù)折線統(tǒng)計(jì)圖可得:最高分為95,眾數(shù)為90;中位數(shù)90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.3、B【解析】

分別計(jì)算四個(gè)方程的判別式的值,然后根據(jù)判別式的意義確定正確選項(xiàng).【詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根,所以A選項(xiàng)錯(cuò)誤;

B、△=(-2)2-4×3=-8<0,方程沒(méi)有實(shí)數(shù)根,所以B選項(xiàng)正確;

C、△=(-2)2-4×1=0,方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根,所以C選項(xiàng)錯(cuò)誤;

D、△=(-2)2-4×(-1)=8>0,方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根,所以D選項(xiàng)錯(cuò)誤.

故選:B.【點(diǎn)睛】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0根時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.4、A【解析】試題分析:首先根據(jù)三角形的外角性質(zhì)得到∠1+∠2=∠4,然后根據(jù)平行線的性質(zhì)得到∠3=∠4求解.解:根據(jù)三角形的外角性質(zhì),∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點(diǎn)評(píng):本題考查了平行線的性質(zhì)以及三角形的外角性質(zhì),屬于基礎(chǔ)題,難度較?。?、C【解析】

根據(jù)圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng),列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長(zhǎng)是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類(lèi)問(wèn)題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:圓錐的母線長(zhǎng)等于側(cè)面展開(kāi)圖的扇形半徑;圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng)正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.6、A【解析】

依據(jù)合并同類(lèi)項(xiàng)法則、單項(xiàng)式乘單項(xiàng)式法則、積的乘方法則進(jìn)行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯(cuò)誤;C、(x3)2=x6,故C錯(cuò)誤;D、x3與x2不是同類(lèi)項(xiàng),不能合并,故D錯(cuò)誤.故選A.【點(diǎn)睛】本題主要考查的是整式的運(yùn)算,熟練掌握相關(guān)法則是解題的關(guān)鍵.7、A【解析】

本題考查反比例函數(shù)的圖象和性質(zhì),由k-8>0即可解得答案.【詳解】∵反比例函數(shù)y=的圖象位于第一、第三象限,∴k-8>0,解得k>8,故選A.【點(diǎn)睛】本題考查了反比例函數(shù)的圖象和性質(zhì):①、當(dāng)k>0時(shí),圖象分別位于第一、三象限;當(dāng)k<0時(shí),圖象分別位于第二、四象限.②、當(dāng)k>0時(shí),在同一個(gè)象限內(nèi),y隨x的增大而減??;當(dāng)k<0時(shí),在同一個(gè)象限,y隨x的增大而增大.8、A【解析】

根據(jù)同底數(shù)冪的乘法的性質(zhì),冪的乘方的性質(zhì),積的乘方的性質(zhì),合并同類(lèi)項(xiàng)的法則,對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】A.(a2)3=a2×3=a6,故本選項(xiàng)正確;B.a(chǎn)2+a2=2a2,故本選項(xiàng)錯(cuò)誤;C.(3a)?(2a)2=(3a)?(4a2)=12a1+2=12a3,故本選項(xiàng)錯(cuò)誤;D.3a﹣a=2a,故本選項(xiàng)錯(cuò)誤.故選A.【點(diǎn)睛】本題考查了合并同類(lèi)項(xiàng),同底數(shù)冪的乘法,冪的乘方,積的乘方和單項(xiàng)式乘法,理清指數(shù)的變化是解題的關(guān)鍵.9、D【解析】

設(shè)小王的行車(chē)時(shí)間為x分鐘,小張的行車(chē)時(shí)間為y分鐘,根據(jù)計(jì)價(jià)規(guī)則計(jì)算出小王的車(chē)費(fèi)和小張的車(chē)費(fèi),建立方程求解.【詳解】設(shè)小王的行車(chē)時(shí)間為x分鐘,小張的行車(chē)時(shí)間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【點(diǎn)睛】本題考查列方程解應(yīng)用題,讀懂表格中的計(jì)價(jià)規(guī)則是解題的關(guān)鍵.10、B【解析】

由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點(diǎn)睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關(guān)鍵.11、D【解析】

∵∠ACD對(duì)的弧是,對(duì)的另一個(gè)圓周角是∠ABD,∴∠ABD=∠ACD(同圓中,同弧所對(duì)的圓周角相等),又∵AB為直徑,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴與∠ACD互余的角是∠BAD.故選D.12、C【解析】

利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點(diǎn)P是BC的中點(diǎn),∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯(cuò)誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關(guān)鍵,也是本題的突破點(diǎn).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),據(jù)此可得.【詳解】解:將數(shù)據(jù)重新排列為7、7、1、1、9、9、9,所以這組數(shù)據(jù)的中位數(shù)為1,故答案為1.【點(diǎn)睛】本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義.14、AC=BD.【解析】試題分析:添加的條件應(yīng)為:AC=BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.試題解析:添加的條件應(yīng)為:AC=BD.證明:∵E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn),∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,則HG∥EF且HG=EF,∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,∴四邊形EFGH為菱形.考點(diǎn):1.菱形的性質(zhì);2.三角形中位線定理.15、1.【解析】

根據(jù)題意分析可得:第1個(gè)圖案中棋子的個(gè)數(shù)5個(gè),第2個(gè)圖案中棋子的個(gè)數(shù)5+6=11個(gè),…,每個(gè)圖形都比前一個(gè)圖形多用6個(gè),繼而可求出第30個(gè)“小屋子”需要的棋子數(shù).【詳解】根據(jù)題意分析可得:第1個(gè)圖案中棋子的個(gè)數(shù)5個(gè).第2個(gè)圖案中棋子的個(gè)數(shù)5+6=11個(gè).….每個(gè)圖形都比前一個(gè)圖形多用6個(gè).∴第30個(gè)圖案中棋子的個(gè)數(shù)為5+29×6=1個(gè).故答案為1.【點(diǎn)睛】考核知識(shí)點(diǎn):圖形的規(guī)律.分析出一般數(shù)量關(guān)系是關(guān)鍵.16、5【解析】

∵多邊形的每個(gè)外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個(gè)多邊形的邊數(shù)為5.故答案為5.17、【解析】

連接AG,延長(zhǎng)AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問(wèn)題.【詳解】連接AG,延長(zhǎng)AG交BC于F.

∵G是△ABC的重心,DE∥BC,

∴BF=CF,

,

∵,,

∴,

∵BF=CF,

∴DG=GE,

∵,,

∴,

∴,

故答案為.【點(diǎn)睛】本題考查三角形的重心,平行線的性質(zhì),平面向量等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.18、【解析】

隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù),據(jù)此用綠燈亮的時(shí)間除以三種燈亮的總時(shí)間,求出抬頭看信號(hào)燈時(shí),是綠燈的概率為多少即可.【詳解】抬頭看信號(hào)燈時(shí),是綠燈的概率為.故答案為:.【點(diǎn)睛】此題主要考查了概率公式的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:(1)隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).(2)P(必然事件)=1.(3)P(不可能事件)=2.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)作圖見(jiàn)解析;(2)【解析】

(1)根據(jù)作一個(gè)角等于已知角的步驟解答即可;(2)由作法可得DE∥BC,又因?yàn)镈是AC的中點(diǎn),可證DE為△ABC的中位線,從而運(yùn)用三角形中位線的性質(zhì)求解.【詳解】解:(1)如圖,∠ADE為所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵點(diǎn)D是AC的中點(diǎn),∴DE為△ABC的中位線,∴DE=BC=.20、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見(jiàn)解析;(3)符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【解析】

(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計(jì)算出AC=10,根據(jù)直角三角形內(nèi)切圓半徑的計(jì)算公式得到Rt△ABC的內(nèi)切圓的半徑=2,設(shè)△ABC的內(nèi)心為I,過(guò)A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據(jù)角平分線的性質(zhì)可判斷點(diǎn)P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數(shù)法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標(biāo)即可.【詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當(dāng)x=1時(shí),y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內(nèi)切圓的半徑=,設(shè)△ABC的內(nèi)心為I,過(guò)A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內(nèi)心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點(diǎn)I、P、Q、G為△ABC的內(nèi)角平分線或外角平分線的交點(diǎn),它們到直線AB、BC、AC距離相等,BI=×2=4,而B(niǎo)I⊥y軸,∴I(4,1),設(shè)直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當(dāng)x=0時(shí),y=2x﹣7=﹣7,則G(0,﹣7);設(shè)直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當(dāng)y=1時(shí),﹣x+13=1,則P(24,1)當(dāng)x=0時(shí),y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、角平分線的性質(zhì)和三角形內(nèi)心的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì)是解題的關(guān)鍵.21、(1)證明見(jiàn)解析;(2)【解析】

(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長(zhǎng),再證明△AFD∽△EFB,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點(diǎn),∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點(diǎn),∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點(diǎn)睛】本題考查了切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理的運(yùn)用;證明某一線段是圓的切線時(shí),一般情況下是連接切點(diǎn)與圓心,通過(guò)證明該半徑垂直于這一線段來(lái)判定切線.22、,.【解析】試題分析:原式第二項(xiàng)利用除法法則變形,約分后兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算得到最簡(jiǎn)結(jié)果,把已知等式變形后代入計(jì)算即可求出值.試題解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.23、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】

(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo).(2)分別求出△CDB三邊的長(zhǎng)度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過(guò)程中,分兩個(gè)階段:①當(dāng)0<t≤時(shí),如答圖2所示,此時(shí)重疊部分為一個(gè)四邊形;②當(dāng)<t<3時(shí),如答圖3所示,此時(shí)重疊部分為一個(gè)三角形.【詳解】解:(Ⅰ)∵點(diǎn)在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點(diǎn)的坐標(biāo)為.如答圖1所示,過(guò)點(diǎn)作軸于點(diǎn)M,則,,.過(guò)點(diǎn)作于點(diǎn),則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設(shè)直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個(gè)單位得到,∴直線的解析式為:;設(shè)直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長(zhǎng),射線交交于,則.在向右平移的過(guò)程中:(1)當(dāng)時(shí),如答圖2所示:設(shè)與交于點(diǎn),可得,.設(shè)與的交點(diǎn)為,則:.解得,∴..(2)當(dāng)時(shí),如答圖3所示:設(shè)分別與交于點(diǎn)、點(diǎn).∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數(shù)關(guān)系式為:.24、(1)AD2=AC?CD.(2)36°.【解析】試題分析:(1)通過(guò)計(jì)算得到AD2=(2)由AD2=AC?CD,得到BC2設(shè)∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內(nèi)角和等于180°,解得:x=36°,從而得到結(jié)論.試題解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設(shè)∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論