江蘇省南京市六合區(qū)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第1頁
江蘇省南京市六合區(qū)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第2頁
江蘇省南京市六合區(qū)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第3頁
江蘇省南京市六合區(qū)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第4頁
江蘇省南京市六合區(qū)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省南京市六合區(qū)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.在如圖的計(jì)算程序中,y與x之間的函數(shù)關(guān)系所對(duì)應(yīng)的圖象大致是()A. B. C. D.2.如圖,,且.、是上兩點(diǎn),,.若,,,則的長為()A. B. C. D.3.小王拋一枚質(zhì)地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.4.如圖,在平行四邊形ABCD中,AE:EB=1:2,E為AB上一點(diǎn),AC與DE相交于點(diǎn)F,S△AEF=3,則S△FCD為()A.6 B.9 C.12 D.275.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點(diǎn)O都落在直線MN上,直線MN∥AB,則點(diǎn)O是△ABC的()A.外心 B.內(nèi)心 C.三條中線的交點(diǎn) D.三條高的交點(diǎn)6.我國古代數(shù)學(xué)著作《九章算術(shù)》中,將底面是直角三角形,且側(cè)棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個(gè)小正方形的邊長均為1),則該“塹堵”的側(cè)面積為()A.16+16 B.16+8 C.24+16 D.4+47.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<08.已知一個(gè)多邊形的每一個(gè)外角都相等,一個(gè)內(nèi)角與一個(gè)外角的度數(shù)之比是3:1,這個(gè)多邊形的邊數(shù)是A.8 B.9 C.10 D.129.2cos30°的值等于()A.1 B. C. D.210.一個(gè)幾何體的俯視圖如圖所示,其中的數(shù)字表示該位置上小正方體的個(gè)數(shù),那么這個(gè)幾何體的主視圖是()A. B. C. D.11.已知數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結(jié)果是()A.a(chǎn)+b B.﹣a﹣c C.a(chǎn)+c D.a(chǎn)+2b﹣c12.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知三個(gè)數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.14.如圖,直線l⊥x軸于點(diǎn)P,且與反比例函數(shù)y1=(x>0)及y2=(x>0)的圖象分別交于點(diǎn)A,B,連接OA,OB,已知△OAB的面積為2,則k1-k2=________.15.計(jì)算(a3)2÷(a2)3的結(jié)果等于________16.某一時(shí)刻,測(cè)得一根高1.5m的竹竿在陽光下的影長為2.5m.同時(shí)測(cè)得旗桿在陽光下的影長為30m,則旗桿的高為__________m.17.?dāng)?shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等”這一推論,如圖所示,若SEBMF=1,則SFGDN=_____.18.如圖,在△ABC中,AB=AC=2,BC=1.點(diǎn)E為BC邊上一動(dòng)點(diǎn),連接AE,作∠AEF=∠B,EF與△ABC的外角∠ACD的平分線交于點(diǎn)F.當(dāng)EF⊥AC時(shí),EF的長為_______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達(dá)式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點(diǎn)坐標(biāo);已知二次函數(shù)C1的圖象經(jīng)過點(diǎn)A(﹣3,1).①求a的值;②點(diǎn)B在二次函數(shù)C1的圖象上,點(diǎn)A,B關(guān)于對(duì)稱軸對(duì)稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個(gè)交點(diǎn),求k的取值范圍.20.(6分)先化簡,再在1,2,3中選取一個(gè)適當(dāng)?shù)臄?shù)代入求值.21.(6分)為響應(yīng)“植樹造林、造福后人”的號(hào)召,某班組織部分同學(xué)義務(wù)植樹棵,由于同學(xué)們的積極參與,實(shí)際參加的人數(shù)比原計(jì)劃增加了,結(jié)果每人比原計(jì)劃少栽了棵,問實(shí)際有多少人參加了這次植樹活動(dòng)?22.(8分)“六一”期間,小張購述100只兩種型號(hào)的文具進(jìn)行銷售,其中A種型號(hào)的文具進(jìn)價(jià)為10元/只,售價(jià)為12元,B種型號(hào)的文具進(jìn)價(jià)為15元1只,售價(jià)為23元/只.(1)小張如何進(jìn)貨,使進(jìn)貨款恰好為1300元?(2)如果購進(jìn)A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?23.(8分)如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.求反比例函數(shù)的表達(dá)式;在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE,直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.24.(10分)如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過弧BD上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長.25.(10分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,求海警船到大事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)26.(12分)小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個(gè)角的平分線,他的作法是這樣的:如圖:(1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;(2)利用兩個(gè)三角板,分別過點(diǎn)M,N畫OM,ON的垂線,交點(diǎn)為P;(3)畫射線OP.則射線OP為∠AOB的平分線.請(qǐng)寫出小林的畫法的依據(jù)______.27.(12分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點(diǎn)G在菱形對(duì)角線AC上運(yùn)動(dòng),角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到與點(diǎn)A重合時(shí),求證:EC+CF=BC;(2)知識(shí)探究:①如圖乙,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到AC的中點(diǎn)時(shí),請(qǐng)直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);②如圖丙,在頂點(diǎn)G運(yùn)動(dòng)的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當(dāng)>2時(shí),求EC的長度.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】函數(shù)→一次函數(shù)的圖像及性質(zhì)2、D【解析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點(diǎn)睛:本題主要考查全等三角形的判定與性質(zhì),證明△ABF≌△CDE是關(guān)鍵.3、B【解析】

直接利用概率的意義分析得出答案.【詳解】解:因?yàn)橐幻顿|(zhì)地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點(diǎn)睛】此題主要考查了概率的意義,明確概率的意義是解答的關(guān)鍵.4、D【解析】

先根據(jù)AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性質(zhì)即可得出結(jié)論.【詳解】解:∵四邊形ABCD是平行四邊形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴==()2,解得S△FCD=1.故選D.【點(diǎn)睛】本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形面積的比等于相似比的平方是解答此題的關(guān)鍵.5、B【解析】

利用平行線間的距離相等,可知點(diǎn)到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點(diǎn)作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點(diǎn)作于,作于E,作于.由題意可知:,,,∴,∴圖中的點(diǎn)是三角形三個(gè)內(nèi)角的平分線的交點(diǎn),點(diǎn)是的內(nèi)心,故選B.【點(diǎn)睛】本題考查平行線間的距離,角平分線定理,三角形的內(nèi)心,解題的關(guān)鍵是判斷出.6、A【解析】

分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個(gè)側(cè)面,另外兩個(gè)側(cè)面全等,是長×高=×4=,所以側(cè)面積之和為×2+4×4=16+16,所以答案選擇A項(xiàng).【點(diǎn)睛】本題考查了由三視圖求側(cè)面積,畫出該圖的立體圖形是解決本題的關(guān)鍵.7、B【解析】

根據(jù)拋物線的開口方向確定a,根據(jù)拋物線與y軸的交點(diǎn)確定c,根據(jù)對(duì)稱軸確定b,根據(jù)拋物線與x軸的交點(diǎn)確定b2-4ac,根據(jù)x=1時(shí),y>0,確定a+b+c的符號(hào).【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯(cuò)誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個(gè)交點(diǎn),∴b2-4ac>0,C錯(cuò)誤;當(dāng)x=1時(shí),y>0,∴a+b+c>0,D錯(cuò)誤;故選B.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.8、A【解析】試題分析:設(shè)這個(gè)多邊形的外角為x°,則內(nèi)角為3x°,根據(jù)多邊形的相鄰的內(nèi)角與外角互補(bǔ)可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設(shè)這個(gè)多邊形的外角為x°,則內(nèi)角為3x°,由題意得:x+3x=180,解得x=45,這個(gè)多邊形的邊數(shù):360°÷45°=8,故選A.考點(diǎn):多邊形內(nèi)角與外角.9、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計(jì)算即可.詳解:2cos30°=2×=.故選C.點(diǎn)睛:此題主要考查了特殊角的三角函數(shù)值的應(yīng)用,熟記30°、45°、60°角的三角函數(shù)值是解題關(guān)鍵.10、A【解析】

一一對(duì)應(yīng)即可.【詳解】最左邊有一個(gè),中間有兩個(gè),最右邊有三個(gè),所以選A.【點(diǎn)睛】理解立體幾何的概念是解題的關(guān)鍵.11、C【解析】

首先根據(jù)數(shù)軸可以得到a、b、c的取值范圍,然后利用絕對(duì)值的定義去掉絕對(duì)值符號(hào)后化簡即可.【詳解】解:通過數(shù)軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.12、D【解析】∵⊙O的半徑OD⊥弦AB于點(diǎn)C,AB=8,∴AC=AB=1.設(shè)⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、±1【解析】

先由平均數(shù)的計(jì)算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進(jìn)行計(jì)算,即可求出x的值.【詳解】解:這三個(gè)數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點(diǎn)睛】本題考查方差的定義:一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.14、2【解析】

試題分析:∵反比例函數(shù)(x>1)及(x>1)的圖象均在第一象限內(nèi),∴>1,>1.∵AP⊥x軸,∴S△OAP=,S△OBP=,∴S△OAB=S△OAP﹣S△OBP==2,解得:=2.故答案為2.15、1【解析】

根據(jù)冪的乘方,底數(shù)不變,指數(shù)相乘;同底數(shù)冪的除法,底數(shù)不變,指數(shù)相減進(jìn)行計(jì)算即可.【詳解】解:原式=【點(diǎn)睛】本題主要考查冪的乘方和同底數(shù)冪的除法,熟記法則是解決本題的關(guān)鍵,在計(jì)算中不要與其他法則相混淆.冪的乘方,底數(shù)不變,指數(shù)相乘;同底數(shù)冪的除法,底數(shù)不變,指數(shù)相減.16、1.【解析】分析:根據(jù)同一時(shí)刻物高與影長成比例,列出比例式再代入數(shù)據(jù)計(jì)算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點(diǎn)睛:本題考查了相似三角形在測(cè)量高度時(shí)的應(yīng)用,解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立數(shù)學(xué)模型來解決問題.17、1【解析】

根據(jù)從長方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等得SEBMF=SFGDN,得SFGDN.【詳解】∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.【點(diǎn)睛】本題考查面積的求解,解題的關(guān)鍵是讀懂題意.18、1+【解析】

當(dāng)AB=AC,∠AEF=∠B時(shí),∠AEF=∠ACB,當(dāng)EF⊥AC時(shí),∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依據(jù)Rt△CFG≌Rt△CFH,可得CH=CG=,再根據(jù)勾股定理即可得到EF的長.【詳解】解:如圖,當(dāng)AB=AC,∠AEF=∠B時(shí),∠AEF=∠ACB,當(dāng)EF⊥AC時(shí),∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=BC=2,又∵AC=2,∴AE=1,EG==,∴CG==,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴CH=CG=,設(shè)EF=x,則HF=GF=x-,∵Rt△EFH中,EH2+FH2=EF2,∴(2+)2+(x-)2=x2,解得x=1+,故答案為1+.【點(diǎn)睛】本題主要考查了角平分線的性質(zhì),勾股定理以及等腰三角形的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y1=a(x+1)2﹣1,頂點(diǎn)為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解析】

(1)化成頂點(diǎn)式即可求得;(2)①把點(diǎn)A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對(duì)稱的性質(zhì)得出B的坐標(biāo),然后分兩種情況討論即可求得;【詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點(diǎn)為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經(jīng)過點(diǎn)A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對(duì)稱軸為直線x=﹣1,∴B(1,1),當(dāng)k>0時(shí),二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過A(﹣3,1)時(shí),1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過B(1,1)時(shí),1=k+k,解得k=,∴≤k≤,當(dāng)k<0時(shí),∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個(gè)交點(diǎn),k的取值范圍是≤k≤或k=﹣1.【點(diǎn)睛】本題考查了二次函數(shù)和系數(shù)的關(guān)系,二次函數(shù)的最值問題,軸對(duì)稱的性質(zhì)等,分類討論是解題的關(guān)鍵.20、,當(dāng)x=2時(shí),原式=.【解析】試題分析:先括號(hào)內(nèi)通分,然后計(jì)算除法,最后取值時(shí)注意使得分式有意義,最后代入化簡即可.試題解析:原式===當(dāng)x=2時(shí),原式=.21、人【解析】

解:設(shè)原計(jì)劃有x人參加了這次植樹活動(dòng)依題意得:解得x=30人經(jīng)檢驗(yàn)x=30是原方程式的根實(shí)際參加了這次植樹活動(dòng)1.5x=45人答實(shí)際有45人參加了這次植樹活動(dòng).22、(1)A種文具進(jìn)貨40只,B種文具進(jìn)貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】

(1)設(shè)可以購進(jìn)A種型號(hào)的文具x只,則可以購進(jìn)B種型號(hào)的文具只,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合A、B兩種文具的進(jìn)價(jià)及總價(jià),即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;(2)根據(jù)題意列不等式,解之即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì),即可解決最值問題.【詳解】(1)設(shè)A種文具進(jìn)貨x只,B種文具進(jìn)貨只,由題意得:,解得:x=40,,答:A種文具進(jìn)貨40只,B種文具進(jìn)貨60只;(2)設(shè)購進(jìn)A型文具a只,則有,且;解得:,∵a為整數(shù),∴a=48、49、50,一共有三種購貨方案;利潤,∵,w隨a增大而減小,當(dāng)a=48時(shí)W最大,即購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【點(diǎn)睛】本題主要考查了一次函數(shù)的實(shí)際問題,熟練掌握一次函數(shù)表達(dá)式的確定以及自變量取值范圍的確定,最值的求解方法是解決本題的關(guān)鍵.23、(1);(2)P(,0);(3)E(,﹣1),在.【解析】

(1)將點(diǎn)A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;(2)先由射影定理求出BC=3,那么B(,﹣3),計(jì)算求出S△AOB=××4=.則S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點(diǎn)坐標(biāo)為(﹣,﹣1),即可求解.【詳解】(1)∵點(diǎn)A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達(dá)式為;(2)∵A(,1),AB⊥x軸于點(diǎn)C,∴OC=,AC=1,由射影定理得=AC?BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負(fù)半軸上的點(diǎn),∴m=﹣,∴點(diǎn)P的坐標(biāo)為(,0);(3)點(diǎn)E在該反比例函數(shù)的圖象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴點(diǎn)E在該反比例函數(shù)的圖象上.考點(diǎn):待定系數(shù)法求反比例函數(shù)解析式;反比例函數(shù)系數(shù)k的幾何意義;坐標(biāo)與圖形變化-旋轉(zhuǎn).24、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個(gè)銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過O作OE⊥AD于E,則E為AD中點(diǎn),又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點(diǎn):2.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.25、小時(shí)【解析】

過點(diǎn)C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據(jù)時(shí)間=路程÷速度即可求出海警船到大事故船C處所需的時(shí)間.【詳解】解:如圖,過點(diǎn)C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時(shí)間大約為:50÷40=(小時(shí)).考點(diǎn):解直角三角形的應(yīng)用-方向角問題26、斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等;全等三角形的對(duì)應(yīng)角相等;兩點(diǎn)確定一條直線【解析】

利用“HL”判斷Rt△OPM≌Rt△OPN,從而得到∠POM=∠PON.【詳解】有畫法得OM=ON,∠OMP=∠ONP=90°,則可判定Rt△OPM≌Rt△OPN,所以∠POM=∠PON,即射線OP為∠AOB的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論