湖北省宜昌市點軍區(qū)達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第1頁
湖北省宜昌市點軍區(qū)達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第2頁
湖北省宜昌市點軍區(qū)達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第3頁
湖北省宜昌市點軍區(qū)達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第4頁
湖北省宜昌市點軍區(qū)達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省宜昌市點軍區(qū)達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在2018年新年賀詞中說道:“安得廣廈千萬間,大庇天下寒士俱歡顏!2017年我國3400000貧困人口實現(xiàn)易地扶貧搬遷、有了溫暖的新家.”其中3400000用科學(xué)記數(shù)法表示為()A.0.34×107 B.3.4×106 C.3.4×105 D.34×1052.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關(guān)于這組數(shù)據(jù)的描述正確的是()A.最低溫度是32℃ B.眾數(shù)是35℃ C.中位數(shù)是34℃ D.平均數(shù)是33℃3.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數(shù)是()A.60° B.35° C.30.5° D.30°4.關(guān)于x的一元二次方程x2-4x+k=0有兩個相等的實數(shù)根,則k的值是()A.2 B.-2 C.4 D.-45.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.6.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°7.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值8.若關(guān)于的方程的兩根互為倒數(shù),則的值為()A. B.1 C.-1 D.09.將(x+3)2﹣(x﹣1)2分解因式的結(jié)果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)10.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應(yīng)值,可判斷該二次函數(shù)的圖象與軸().

…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側(cè)C.有兩個交點,且它們均在軸同側(cè) D.無交點二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在Rt△ABC中,D,E為斜邊AB上的兩個點,且BD=BC,AE=AC,則∠DCE的大小等于__________度.12.如圖是我區(qū)某一天內(nèi)的氣溫變化圖,結(jié)合該圖給出的信息寫出一個正確的結(jié)論:________.13.二次函數(shù)的圖象與y軸的交點坐標是________.14.若一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過第一、三、四象限,則是k的值可以是_____.(寫出一個即可).15.分式方程的解為__________.16.已知函數(shù)是關(guān)于的二次函數(shù),則__________.三、解答題(共8題,共72分)17.(8分)P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關(guān)于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關(guān)于⊙O的“冪值”為_____;②判斷當弦AB的位置改變時,點P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關(guān)于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關(guān)于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.18.(8分)解方程:3x2﹣2x﹣2=1.19.(8分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.20.(8分)當x取哪些整數(shù)值時,不等式與4﹣7x<﹣3都成立?21.(8分)如圖所示:△ABC是等腰三角形,∠ABC=90°.(1)尺規(guī)作圖:作線段AB的垂直平分線l,垂足為H.(保留作圖痕跡,不寫作法);(2)垂直平分線l交AC于點D,求證:AB=2DH.22.(10分)如圖,在Rt△ABC中,,CD⊥AB于點D,BE⊥AB于點B,BE=CD,連接CE,DE.(1)求證:四邊形CDBE為矩形;(2)若AC=2,,求DE的長.23.(12分)將一個等邊三角形紙片AOB放置在平面直角坐標系中,點O(0,0),點B(6,0).點C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當點C平移到OB的中點時,求點D′的坐標;(II)如圖②,若邊D′C′與AB的交點為M,邊D′B′與∠ABB′的角平分線交于點N,當BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點B順時針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點為P,連接AP,當AP最大時,求點P的坐標及AD′的值.(直接寫出結(jié)果即可).24.為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

解:3400000=.故選B.2、D【解析】分析:將數(shù)據(jù)從小到大排列,由中位數(shù)及眾數(shù)、平均數(shù)的定義,可得出答案.詳解:由折線統(tǒng)計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數(shù)為33℃,中位數(shù)為33℃,平均數(shù)是=33℃.故選D.點睛:本題考查了眾數(shù)、中位數(shù)的知識,解答本題的關(guān)鍵是由折線統(tǒng)計圖得到最高氣溫的7個數(shù)據(jù).3、D【解析】

根據(jù)圓心角、弧、弦的關(guān)系定理得到∠AOB=∠AOC,再根據(jù)圓周角定理即可解答.【詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點睛】此題考查了圓心角、弧、弦的關(guān)系定理,解題關(guān)鍵在于利用好圓周角定理.4、C【解析】

對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數(shù)根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式5、D【解析】

先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關(guān)鍵.6、A【解析】

根據(jù)∠ABD=35°就可以求出的度數(shù),再根據(jù),可以求出,因此就可以求得的度數(shù),從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數(shù)都是70°,∵BD為直徑,∴的度數(shù)是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數(shù)也是110°,∴的度數(shù)是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點睛】本題考查了等腰三角形性質(zhì)、圓周角定理,主要考查學(xué)生的推理能力.7、B【解析】

解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.8、C【解析】

根據(jù)已知和根與系數(shù)的關(guān)系得出k2=1,求出k的值,再根據(jù)原方程有兩個實數(shù)根,即可求出符合題意的k的值.【詳解】解:設(shè)、是的兩根,由題意得:,由根與系數(shù)的關(guān)系得:,∴k2=1,解得k=1或?1,∵方程有兩個實數(shù)根,則,當k=1時,,∴k=1不合題意,故舍去,當k=?1時,,符合題意,∴k=?1,故答案為:?1.【點睛】本題考查的是一元二次方程根與系數(shù)的關(guān)系及相反數(shù)的定義,熟知根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.9、C【解析】

直接利用平方差公式分解因式即可.【詳解】(x+3)2?(x?1)2=[(x+3)+(x?1)][(x+3)?(x?1)]=4(2x+2)=8(x+1).故選C.【點睛】此題主要考查了公式法分解因式,正確應(yīng)用平方差公式是解題關(guān)鍵.10、B【解析】

根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側(cè)故選B.【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握拋物線的對稱性,即可完成.二、填空題(本大題共6個小題,每小題3分,共18分)11、45【解析】試題解析:設(shè)∠DCE=x,∠ACD=y,則∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.考點:1.等腰三角形的性質(zhì);2.三角形內(nèi)角和定理.12、這一天的最高氣溫約是26°【解析】

根據(jù)我區(qū)某一天內(nèi)的氣溫變化圖,分析變化趨勢和具體數(shù)值,即可求出答案.【詳解】解:根據(jù)圖象可得這一天的最高氣溫約是26°,故答案為:這一天的最高氣溫約是26°.【點睛】本題考查的是函數(shù)圖象問題,統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.13、【解析】

求出自變量x為1時的函數(shù)值即可得到二次函數(shù)的圖象與y軸的交點坐標.【詳解】把代入得:,∴該二次函數(shù)的圖象與y軸的交點坐標為,故答案為.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,在y軸上的點的橫坐標為1.14、1【解析】

由一次函數(shù)圖象經(jīng)過第一、三、四象限,可知k>0,﹣1<0,在范圍內(nèi)確定k的值即可.【詳解】解:因為一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.【點睛】根據(jù)一次函數(shù)圖象所經(jīng)過的象限,可確定一次項系數(shù),常數(shù)項的值的符號,從而確定字母k的取值范圍.15、-1【解析】【分析】先去分母,化為整式方程,然后再進行檢驗即可得.【詳解】兩邊同乘(x+2)(x-2),得:x-2﹣3x=0,解得:x=-1,檢驗:當x=-1時,(x+2)(x-2)≠0,所以x=-1是分式方程的解,故答案為:-1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關(guān)鍵.16、1【解析】

根據(jù)一元二次方程的定義可得:,且,求解即可得出m的值.【詳解】解:由題意得:,且,解得:,且,∴故答案為:1.【點睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握“未知數(shù)的最高次數(shù)是1”且“二次項的系數(shù)不等于0”.三、解答題(共8題,共72分)17、(1)①20;②當弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明見解析;(2)點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解析】【詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長,然后依據(jù)冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結(jié)論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標,然后由題意圓的冪值為6,半徑為1可求得d的值,再結(jié)合兩點間的距離公式可得到關(guān)于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.【詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,∵AO=OB,PO⊥AB,∴AP=PB,∴點P關(guān)于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關(guān)于⊙O的“冪值”=r2﹣d2,故答案為:點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯(lián)立AB與CP,得,∴點P的坐標為(﹣﹣b,+b),∵點P關(guān)于⊙C的“冪值”為6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范圍是﹣3≤b≤,故答案為:﹣3≤b≤.【點睛】本題綜合性質(zhì)較強,考查了新定義題,解答過程中涉及到了冪值的定義、勾股定理、等腰三角形的性質(zhì)、相似三角形的性質(zhì)和判定、一次函數(shù)的交點問題、兩點間的距離公式等,依據(jù)兩點間的距離公式列出關(guān)于b的方程,從而求得b的極值是解題的關(guān)鍵.18、【解析】

先找出a,b,c,再求出b2-4ac=28,根據(jù)公式即可求出答案.【詳解】解:x==即∴原方程的解為.【點睛】本題考查對解一元二次方程-提公因式法、公式法,因式分解法等知識點的理解和掌握,能熟練地運用公式法解一元二次方程是解此題的關(guān)鍵.19、(1)證明見解析;(2)【解析】分析:(1)如下圖,連接OC,由已知易得OC⊥DE,結(jié)合BD⊥DE可得OC∥BD,從而可得∠1=∠2,結(jié)合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,從而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根據(jù)相似三角形的性質(zhì)可得得,由,設(shè)EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.詳解:(1)證明:連結(jié)OC,∵DE與⊙O相切于點C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD..∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA..(2)∵OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,.∴,∴,∵,設(shè)EA=2k,AO=3k,∴OC=OA=OB=3k.∴.點睛:(1)作出如圖所示的輔助線,由“切線的性質(zhì)”得到OC⊥DE結(jié)合BD⊥DE得到OC∥BD是解答第1小題的關(guān)鍵;(2)解答第2小題的關(guān)鍵是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM這樣利用相似三角形的性質(zhì)結(jié)合已知條件即可求得所求值了.20、2,1【解析】

根據(jù)題意得出不等式組,解不等式組求得其解集即可.【詳解】根據(jù)題意得,解不等式①,得:x≤1,解不等式②,得:x>1,則不等式組的解集為1<x≤1,∴x可取的整數(shù)值是2,1.【點睛】本題考查了解不等式組的能力,根據(jù)題意得出不等式組是解題的關(guān)鍵.21、(1)見解析;(2)證明見解析.【解析】

(1)利用線段垂直平分線的作法,分別以A,B為端點,大于為半徑作弧,得出直線l即可;

(2)利用利用平行線的性質(zhì)以及平行線分線段成比例定理得出點D是AC的中點,進而得出答案.【詳解】解:(1)如圖所示:直線l即為所求;

(2)證明:∵點H是AB的中點,且DH⊥AB,∴DH∥BC,∴點D是AC的中點,∵∴AB=2DH.【點睛】考查作圖—基本作圖,線段垂直平分線的性質(zhì),等腰三角形的性質(zhì)等,熟練掌握垂直平分線的性質(zhì)是解題的性質(zhì).22、(1)見解析;(2)1【解析】

分析:(1)根據(jù)平行四邊形的判定與矩形的判定證明即可;(2)根據(jù)矩形的性質(zhì)和三角函數(shù)解答即可.詳解:(1)證明:∵CD⊥AB于點D,BE⊥AB于點B,∴.∴CD∥BE.又∵BE=CD,∴四邊形CDBE為平行四邊形.又∵,∴四邊形CDBE為矩形.(2)解:∵四邊形CDBE為矩形,∴DE=BC.∵在Rt△ABC中,,CD⊥AB,可得.∵,∴.∵在Rt△ABC中,,AC=2,,∴.∴DE=BC=1.點睛:本題考查了矩形的判定與性質(zhì),關(guān)鍵是根據(jù)平行四邊形的判定與矩形的判定解答.23、(Ⅰ)D′(3+,3);(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由見解析;(Ⅲ)P().【解析】

(Ⅰ)如圖①中,作DH⊥BC于H.首先求出點D坐標,再求出CC′的長即可解決問題;(Ⅱ)當BB'=時,四邊形MBND'是菱形.首先證明四邊形MBND′是平行四邊形,再證明BB′=BC′即可解決問題;(Ⅲ)在△ABP中,由三角形三邊關(guān)系得,AP<AB+BP,推出當點A,B,P三點共線時,AP最大.【詳解】(Ⅰ)如圖①中,作DH⊥BC于H,∵△AOB是等邊三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等邊三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)當BB'=時,四邊形MBND'是菱形,理由:如圖②中,∵△ABC是等邊三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分線,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四邊形MBND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等邊三角形,∴MC=CE',NC=CC',∵B'C'

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論