廣東省東莞市捷勝中學(xué)2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第1頁
廣東省東莞市捷勝中學(xué)2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第2頁
廣東省東莞市捷勝中學(xué)2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第3頁
廣東省東莞市捷勝中學(xué)2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第4頁
廣東省東莞市捷勝中學(xué)2023-2024學(xué)年中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省東莞市捷勝中學(xué)2023-2024學(xué)年中考五模數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,將一塊三角板的直角頂點放在直尺的一邊上,當(dāng)∠2=38°時,∠1=()A.52° B.38° C.42° D.60°2.的倒數(shù)是()A. B.3 C. D.3.如圖,共有12個大不相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個涂上陰影,則能構(gòu)成這個正方體的表面展開圖的概率是()A. B. C. D.4.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.5.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結(jié)論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC6.計算a?a2的結(jié)果是()A.a(chǎn)B.a(chǎn)2C.2a2D.a(chǎn)37.五名女生的體重(單位:kg)分別為:37、40、38、42、42,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()A.2、40B.42、38C.40、42D.42、408.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.89.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學(xué)的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經(jīng)過點P;②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對10.下表是某校合唱團(tuán)成員的年齡分布,對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)11.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機(jī)摸出一個球,摸出的球是紅球的概率是()A. B. C. D.12.鄭州某中學(xué)在備考2018河南中考體育的過程中抽取該校九年級20名男生進(jìn)行立定跳遠(yuǎn)測試,以便知道下一階段的體育訓(xùn)練,成績?nèi)缦滤荆撼煽儯▎挝唬好祝?.102.202.252.302.352.402.452.50人數(shù)23245211則下列敘述正確的是()A.這些運動員成績的眾數(shù)是5B.這些運動員成績的中位數(shù)是2.30C.這些運動員的平均成績是2.25D.這些運動員成績的方差是0.0725二、填空題:(本大題共6個小題,每小題4分,共24分.)13.老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個多項式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:則所捂住的多項式是___.14.二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標(biāo)為(,﹣2);⑤當(dāng)x<時,y隨x的增大而減??;⑥a+b+c>0中,正確的有______.(只填序號)15.如圖,在平行四邊形ABCD中,E為邊BC上一點,AC與DE相交于點F,若CE=2EB,S△AFD=9,則S△EFC等于_____.16.如果拋物線y=ax2+5的頂點是它的最低點,那么a的取值范圍是_____.17.兩地相距的路程為240千米,甲、乙兩車沿同一線路從地出發(fā)到地,分別以一定的速度勻速行駛,甲車先出發(fā)40分鐘后,乙車才出發(fā).途中乙車發(fā)生故障,修車耗時20分鐘,隨后,乙車車速比發(fā)生故障前減少了10千米/小時(仍保持勻速前行),甲、乙兩車同時到達(dá)地.甲、乙兩車相距的路程(千米)與甲車行駛時間(小時)之間的關(guān)系如圖所示,求乙車修好時,甲車距地還有____________千米.18.計算:的值是______________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.分別寫出圖中點A和點C的坐標(biāo);畫出△ABC繞點C按順時針方向旋轉(zhuǎn)90°后的△A′B′C′;求點A旋轉(zhuǎn)到點A′所經(jīng)過的路線長(結(jié)果保留π).20.(6分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結(jié)PD、AD.(1)求△ABC的面積;(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.21.(6分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長.22.(8分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,,請你利用所學(xué)知識探索它的最大面積(結(jié)果保留根號)23.(8分)已知拋物線F:y=x1+bx+c的圖象經(jīng)過坐標(biāo)原點O,且與x軸另一交點為(﹣33(1)求拋物線F的解析式;(1)如圖1,直線l:y=33x+m(m>0)與拋物線F相交于點A(x1,y1)和點B(x1,y1)(點A在第二象限),求y1﹣y1(3)在(1)中,若m=43①判斷△AA′B的形狀,并說明理由;②平面內(nèi)是否存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.24.(10分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?25.(10分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.26.(12分)已知:如圖,,,.求證:.27.(12分)如圖,在中,點是的中點,點是線段的延長線上的一動點,連接,過點作的平行線,與線段的延長線交于點,連接、.求證:四邊形是平行四邊形.若,,則在點的運動過程中:①當(dāng)______時,四邊形是矩形;②當(dāng)______時,四邊形是菱形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:如圖:∵∠3=∠2=38°°(兩直線平行同位角相等),∴∠1=90°﹣∠3=52°,故選A.考點:平行線的性質(zhì).2、A【解析】

解:的倒數(shù)是.故選A.【點睛】本題考查倒數(shù),掌握概念正確計算是解題關(guān)鍵.3、D【解析】

由正方體表面展開圖的形狀可知,此正方體還缺一個上蓋,故應(yīng)在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因為共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,所以剩下7個小正方形.在其余的7個小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的小正方形有4個,因此先從其余的小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的概率是.故選D.【點睛】本題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關(guān)鍵.4、B【解析】

連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.5、D【解析】

解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【點睛】本題考查作圖—復(fù)雜作圖;平行線的判定與性質(zhì);三角形的外角性質(zhì).6、D【解析】a·a2=a3.故選D.7、D【解析】【分析】根據(jù)眾數(shù)和中位數(shù)的定義分別進(jìn)行求解即可得.【詳解】這組數(shù)據(jù)中42出現(xiàn)了兩次,出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)是42,將這組數(shù)據(jù)從小到大排序為:37,38,40,42,42,所以這組數(shù)據(jù)的中位數(shù)為40,故選D.【點睛】本題考查了眾數(shù)和中位數(shù),一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).將一組數(shù)據(jù)從小到大(或從大到小)排序后,位于最中間的數(shù)(或中間兩數(shù)的平均數(shù))是這組數(shù)據(jù)的中位數(shù).8、D【解析】分析:根據(jù)二元一次方程組的解,直接代入構(gòu)成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據(jù)題意,將代入,得:,①+②,得:m+3n=8,故選D.點睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數(shù)是解題關(guān)鍵,比較簡單,是??碱}型.9、A【解析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進(jìn)而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學(xué)的作法都正確.故選A.【點睛】本題考查了復(fù)雜的作圖,重點是運用切線的判定來說明作法的正確性.10、D【解析】

由表易得x+(10-x)=10,所以總?cè)藬?shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學(xué)人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團(tuán)總?cè)藬?shù)為30人,∴合唱團(tuán)成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.11、B【解析】袋中一共7個球,摸到的球有7種可能,而且機(jī)會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.12、B【解析】

根據(jù)方差、平均數(shù)、中位數(shù)和眾數(shù)的計算公式和定義分別對每一項進(jìn)行分析,即可得出答案.【詳解】由表格中數(shù)據(jù)可得:A、這些運動員成績的眾數(shù)是2.35,錯誤;B、這些運動員成績的中位數(shù)是2.30,正確;C、這些運動員的平均成績是2.30,錯誤;D、這些運動員成績的方差不是0.0725,錯誤;故選B.【點睛】考查了方差、平均數(shù)、中位數(shù)和眾數(shù),熟練掌握定義和計算公式是本題的關(guān)鍵,平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x2+7x-4【解析】

設(shè)他所捂的多項式為A,則接下來利用去括號法則對其進(jìn)行去括號,然后合并同類項即可.【詳解】解:設(shè)他所捂的多項式為A,則根據(jù)題目信息可得他所捂的多項式為故答案為【點睛】本題是一道關(guān)于整數(shù)加減運算的題目,解答本題的關(guān)鍵是熟練掌握整數(shù)的加減運算;14、①②③⑤【解析】

根據(jù)圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=∴abc>0,4ac<b2,當(dāng)時,y隨x的增大而減小.故①②⑤正確,∵∴2a+b>0,故③正確,由圖象可得頂點縱坐標(biāo)小于﹣2,則④錯誤,當(dāng)x=1時,y=a+b+c<0,故⑥錯誤故答案為:①②③⑤【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.15、1【解析】

由于四邊形ABCD是平行四邊形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它們的相似比為3:2,最后利用相似三角形的性質(zhì)即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它們的相似比為3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=1.故答案為1.【點睛】此題主要考查了相似三角形的判定與性質(zhì),解題首先利用平行四邊形的構(gòu)造相似三角形的相似條件,然后利用其性質(zhì)即可求解.16、a>1【解析】根據(jù)二次函數(shù)的圖像,由拋物線y=ax2+5的頂點是它的最低點,知a>1,故答案為a>1.17、90【解析】【分析】觀察圖象可知甲車40分鐘行駛了30千米,由此可求出甲車速度,再根據(jù)甲車行駛小時時與乙車的距離為10千米可求得乙車的速度,從而可求得乙車出故障修好后的速度,再根據(jù)甲、乙兩車同時到達(dá)B地,設(shè)乙車出故障前走了t1小時,修好后走了t2小時,根據(jù)等量關(guān)系甲車用了小時行駛了全程,乙車行駛的路程為60t1+50t2=240,列方程組求出t2,再根據(jù)甲車的速度即可知乙車修好時甲車距B地的路程.【詳解】甲車先行40分鐘(),所行路程為30千米,因此甲車的速度為(千米/時),設(shè)乙車的初始速度為V乙,則有,解得:(千米/時),因此乙車故障后速度為:60-10=50(千米/時),設(shè)乙車出故障前走了t1小時,修好后走了t2小時,則有,解得:,45×2=90(千米),故答案為90.【點評】本題考查了一次函數(shù)的實際應(yīng)用,難度較大,求出速度后能從題中找到必要的等量關(guān)系列方程組進(jìn)行求解是關(guān)鍵.18、-1【解析】解:=-1.故答案為:-1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)、(2)見解析(3)【解析】試題分析:(1)根據(jù)點的平面直角坐標(biāo)系中點的位置寫出點的坐標(biāo);(2)根據(jù)旋轉(zhuǎn)圖形的性質(zhì)畫出旋轉(zhuǎn)后的圖形;(3)點A所經(jīng)過的路程是以點C為圓心,AC長為半徑的扇形的弧長.試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據(jù)勾股定理可得:AC=3,則.考點:圖形的旋轉(zhuǎn)、扇形的弧長計算公式.20、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點A作AH⊥BC于點H,根據(jù)cosB=求得BH的長,從而根據(jù)已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據(jù),代入相關(guān)的量即可得;(3)分情況進(jìn)行討論即可得.試題解析:(1)過點A作AH⊥BC于點H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長線于E,可得cos∠CAE=,①當(dāng)∠ADP=90°時,cos∠APD=cos∠CAE=,即,解得x=;②當(dāng)∠PAD=90°時,,解得x=,綜上所述,PB=或.【點睛】本題考查了相似三角形的判定與性質(zhì)、底在同一直線上且高相等的三角形面積的關(guān)系等,結(jié)合圖形及已知選擇恰當(dāng)?shù)闹R進(jìn)行解答是關(guān)鍵.21、(1)見解析;(2)2.【解析】

(1)四邊形ABCD是平行四邊形,由平行四邊形的性質(zhì),可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因為AD=DE=1,則AD=AB=1,四邊形ABCD是菱形,由菱形的性質(zhì)及解直角三角形可得AO=AB?sin∠ABO=2,BO=AB?cos∠ABO=2,BD=1,則AE=BD,利用勾股定理可得OE.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四邊形ABDE是平行四邊形;(2)∵AD=DE=1,∴AD=AB=1.∴?ABCD是菱形,∴AB=BC,AC⊥BD,,.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,,.∴.∵四邊形ABDE是平行四邊形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【點睛】此題考查平行四邊形的性質(zhì)及判斷,考查菱形的判斷及性質(zhì),及解直角三角形,解題關(guān)鍵在于掌握判定定理和利用三角函數(shù)進(jìn)行計算.22、(1)①;②;(2)150+475+475.【解析】

(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質(zhì)可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結(jié)合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當(dāng)點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,F(xiàn)D'即為所求最大值,再求得

△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內(nèi)接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC==10,因為∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對邊AC為定邊,所以,A、C、D點在同一個圓上,做AC、CD中垂線,交點即為圓O,如圖,當(dāng)點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D’,交AC于F,F(xiàn)D’即為所求最大值,連接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=ACD’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.【點睛】本題為圓的綜合應(yīng)用,涉及知識點有圓周角定理、不等式的性質(zhì)、解直角三角形及轉(zhuǎn)化思想等.在(1)中注意直徑是最長的弦,在(2)中確定出四邊形ABCD面積最大時,D點的位置是解題的關(guān)鍵.本題考查知識點較多,綜合性很強(qiáng),計算量很大,難度適中.23、(1)y=x1+33x;(1)y1﹣y1=233π;(3)①△AA′B為等邊三角形,理由見解析;②平面內(nèi)存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標(biāo)為(13,23)、(﹣【解析】

(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法即可求出拋物線F的解析式;(1)將直線l的解析式代入拋物線F的解析式中,可求出x1、x1的值,利用一次函數(shù)圖象上點的坐標(biāo)特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根據(jù)m的值可得出點A、B的坐標(biāo),利用對稱性求出點A′的坐標(biāo).①利用兩點間的距離公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B為等邊三角形;②根據(jù)等邊三角形的性質(zhì)結(jié)合菱形的性質(zhì),可得出存在符合題意得點P,設(shè)點P的坐標(biāo)為(x,y),分三種情況考慮:(i)當(dāng)A′B為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標(biāo);(ii)當(dāng)AB為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標(biāo);(iii)當(dāng)AA′為對角線時,根據(jù)菱形的性質(zhì)(對角線互相平分)可求出點P的坐標(biāo).綜上即可得出結(jié)論.【詳解】(1)∵拋物線y=x1+bx+c的圖象經(jīng)過點(0,0)和(﹣33∴c=013-∴拋物線F的解析式為y=x1+33(1)將y=33x+m代入y=x1+33x,得:x解得:x1=﹣π,x1=π,∴y1=﹣133π+m,y1=∴y1﹣y1=(133π+m)﹣(﹣13(3)∵m=43∴點A的坐標(biāo)為(﹣233,23∵點A′是點A關(guān)于原點O的對稱點,∴點A′的坐標(biāo)為(233,﹣①△AA′B為等邊三角形,理由如下:∵A(﹣233,23),B(233∴AA′=83,AB=83,A′B=∴AA′=AB=A′B,∴△AA′B為等邊三角形.②∵△AA′B為等邊三角形,∴存在符合題意的點P,且以點A、B、A′、P為頂點的菱形分三種情況,設(shè)點P的坐標(biāo)為(x,y).(i)當(dāng)A′B為對角線時,有x-2解得x=2∴點P的坐標(biāo)為(13,23(ii)當(dāng)AB為對角線時,有x=-2解得:x=-2∴點P的坐標(biāo)為(﹣233,(iii)當(dāng)AA′為對角線時,有x=-2解得:x=-2∴點P的坐標(biāo)為(﹣23綜上所述:平面內(nèi)存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標(biāo)為(13,23)、(﹣233【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次函數(shù)圖象上點的坐標(biāo)特征、等邊三角形的判定與性質(zhì)以及菱形的判定與性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(1)將一次函數(shù)解析式代入二次函數(shù)解析式中求出x1、x1的值;(3)①利用勾股定理(兩點間的距離公式)求出AB、AA′、A′B的值;②分A′B為對角線、AB為對角線及AA′為對角線三種情況求出點P的坐標(biāo).24、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】

(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設(shè)購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數(shù),所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊(yùn)含的數(shù)量關(guān)系,列出方程組或不等式組解決問題.25、(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標(biāo),利用交點式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標(biāo),表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標(biāo);同理可得其他圖形中點P的坐標(biāo).詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論