重慶市第一中學2024屆中考數(shù)學四模試卷含解析_第1頁
重慶市第一中學2024屆中考數(shù)學四模試卷含解析_第2頁
重慶市第一中學2024屆中考數(shù)學四模試卷含解析_第3頁
重慶市第一中學2024屆中考數(shù)學四模試卷含解析_第4頁
重慶市第一中學2024屆中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市第一中學2024屆中考數(shù)學四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.2.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°3.如圖,是一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象,則關于x的不等式kx+b>的解集為A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣24.一組數(shù)據(jù):6,3,4,5,7的平均數(shù)和中位數(shù)分別是()A.5,5 B.5,6 C.6,5 D.6,65.下列計算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=16.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.127.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=88.某微生物的直徑為0.000005035m,用科學記數(shù)法表示該數(shù)為()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣59.如圖,在矩形ABCD中,E是AD上一點,沿CE折疊△CDE,點D恰好落在AC的中點F處,若CD=,則△ACE的面積為()A.1 B. C.2 D.210.如圖1,在矩形ABCD中,動點E從A出發(fā),沿AB→BC方向運動,當點E到達點C時停止運動,過點E做FE⊥AE,交CD于F點,設點E運動路程為x,F(xiàn)C=y(tǒng),如圖2所表示的是y與x的函數(shù)關系的大致圖象,當點E在BC上運動時,F(xiàn)C的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形ABCD內有兩點E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長為_____.12.如圖,將矩形ABCD繞點C沿順時針方向旋轉90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.13.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.14.若分式方程有增根,則m的值為______.15.一機器人以0.2m/s的速度在平地上按下圖中的步驟行走,那么該機器人從開始到停止所需時間為__s.16.不等式組的解集是_____;三、解答題(共8題,共72分)17.(8分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?18.(8分)請根據(jù)圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)19.(8分)解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在數(shù)軸上表示出來:(4)原不等式的解集為.20.(8分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.21.(8分)如圖,在?ABCD中,以點4為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于12(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大?。?2.(10分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質.小東根據(jù)學習函數(shù)的經驗,對函數(shù)y=﹣2x的圖象與性質進行了探究.下面是小東的探究過程,請補充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質________.23.(12分)某中學九年級數(shù)學興趣小組想測量建筑物AB的高度他們在C處仰望建筑物頂端A處,測得仰角為,再往建筑物的方向前進6米到達D處,測得仰角為,求建筑物的高度測角器的高度忽略不計,結果精確到米,,24.國家發(fā)改委公布的《商品房銷售明碼標價規(guī)定》,從2011年5月1日起商品房銷售實行一套一標價.商品房銷售價格明碼標價后,可以自行降價、打折銷售,但漲價必須重新申報.某市某樓盤準備以每平方米5000元的均價對外銷售,由于新政策的出臺,購房都持幣觀望.為了加快資金周轉,房地產開發(fā)商對價格經過兩次下調后,決定以每平方米4050元的均價開盤銷售.求平均每次下調的百分率;某人準備以開盤均價購買一套100平方米的房子,開發(fā)商還給予以下兩種優(yōu)惠方案發(fā)供選擇:①打9.8折銷售;②不打折,送兩年物業(yè)管理費,物業(yè)管理費是每平方米每月1.5元,請問哪種方案更優(yōu)惠?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.2、C【解析】

由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點睛】本題主要考查平行線的性質,熟悉掌握性質是關鍵.3、C【解析】

根據(jù)反比例函數(shù)與一次函數(shù)在同一坐標系內的圖象可直接解答.【詳解】觀察圖象,兩函數(shù)圖象的交點坐標為(1,2),(-2,-1),kx+b>的解就是一次函數(shù)y=kx+b圖象在反比例函數(shù)y=的圖象的上方的時候x的取值范圍,

由圖象可得:-2<x<0或x>1,

故選C.【點睛】本題考查的是反比例涵數(shù)與一次函數(shù)圖象在同一坐標系中二者的圖象之間的關系.一般這種類型的題不要計算反比計算表達式,解不等式,直接從從圖象上直接解答.4、A【解析】試題分析:根據(jù)平均數(shù)的定義列式計算,再根據(jù)找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)解答.平均數(shù)為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數(shù)為:1.故選A.考點:中位數(shù);算術平均數(shù).5、D【解析】試題分析:x4x4=x8(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術平方根取正號);(a6)考點:1、冪的運算;2、完全平方公式;3、算術平方根.6、B【解析】

根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結論.【詳解】∵點A的坐標為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,菱形的性質,勾股定理,正確的識別圖形是解題的關鍵.7、D【解析】

根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;

故選D.【點睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.8、A【解析】試題分析:0.000005035m,用科學記數(shù)法表示該數(shù)為5.035×10﹣6,故選A.考點:科學記數(shù)法—表示較小的數(shù).9、B【解析】

由折疊的性質可得CD=CF=,DE=EF,AC=,由三角形面積公式可求EF的長,即可求△ACE的面積.【詳解】解:∵點F是AC的中點,∴AF=CF=AC,∵將△CDE沿CE折疊到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故選B.【點睛】本題考查了翻折變換,勾股定理,熟練運用三角形面積公式求得DE=EF=1是解決本題的關鍵.10、B【解析】

易證△CFE∽△BEA,可得,根據(jù)二次函數(shù)圖象對稱性可得E在BC中點時,CF有最大值,列出方程式即可解題.【詳解】若點E在BC上時,如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數(shù)圖象對稱性可得E在BC中點時,CF有最大值,此時,BE=CE=x﹣,即,∴,當y=時,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點睛】本題考查了二次函數(shù)頂點問題,考查了相似三角形的判定和性質,考查了矩形面積的計算,本題中由圖象得出E為BC中點是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:連接AC,交EF于點M,可證明△AEM∽△CMF,根據(jù)條件可求得AE、EM、FM、CF,再結合勾股定理可求得AB.詳解:連接AC,交EF于點M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=1,EF=FC=3,∴,∴EM=,F(xiàn)M=,在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=,即正方形的邊長為.故答案為:.點睛:本題主要考查相似三角形的判定和性質及正方形的性質,構造三角形相似利用相似三角形的對應邊成比例求得AC的長是解題的關鍵,注意勾股定理的應用.12、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為13、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據(jù)勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.14、-1【解析】

增根是分式方程化為整式方程后產生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點睛】本題考查了分式方程的增根,增根確定后可按如下步驟進行:化分式方程為整式方程;把增根代入整式方程即可求得相關字母的值.15、240【解析】根據(jù)圖示,得出機器人的行走路線是沿著一個正八邊形的邊長行走一周,是解決本題的關鍵,考察了計算多邊形的周長,本題中由于機器人最后必須回到起點,可知此機器人一共轉了360°,我們可以計算機器人所轉的回數(shù),即360°÷45°=8,則機器人的行走路線是沿著一個正八邊形的邊長行走一周,故機器人一共行走6×8=48m,根據(jù)時間=路程÷速度,即可得出結果.本題解析:依據(jù)題中的圖形,可知機器人一共轉了360°,∵360°÷45°=8,∴機器人一共行走6×8=48m.∴該機器人從開始到停止所需時間為48÷0.2=240s.16、x≤1【解析】分析:分別求出不等式組中兩個不等式的解集,找出解集的公共部分即可確定出不等式組的解集.詳解:,由①得:x由②得:.則不等式組的解集為:x.故答案為x≤1.點睛:本題主要考查了解一元一次不等式組.三、解答題(共8題,共72分)17、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【解析】

(1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據(jù)“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【詳解】(1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.

(2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當大貨車8輛時,則小貨車2輛;

當大貨車9輛時,則小貨車1輛;

當大貨車10輛時,則小貨車0輛;

設運費為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當m=8時,運費最少,

∴W=130×8+100×2=1240(元),

答:貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【點睛】考查了二元一次方程組和一元一次不等式的應用,體現(xiàn)了數(shù)學建模思想,考查了學生用方程解實際問題的能力,解題的關鍵是根據(jù)題意建立方程組,并利用不等式求解大貨車的數(shù)量,解題時注意題意中一次運完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數(shù)性質確定方案.18、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解析】

(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數(shù),∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當n>25時,40﹣1.6n<0,即160+0.64n<120+8n,∴選擇甲商場購買更合算.【點睛】此題主要考查不等式的應用,解題的關鍵是根據(jù)題意找到等量關系與不等關系進行列式求解.19、(1)x≤1;(1)x≥﹣1;(3)見解析;(4)﹣1≤x≤1.【解析】

先求出不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)解不等式①,得x≤1,(1)解不等式②,得x≥﹣1,(3)把不等式①和②的解集在數(shù)軸上表示出來:;(4)原不等式組的解集為﹣1≤x≤1,故答案為x≤1,x≥﹣1,﹣1≤x≤1.【點睛】本題考查了解一元一次不等式組,能根據(jù)不等式的解集找出不等式組的解集是解此題的關鍵.20、(1)真;(2);(3)或或.【解析】

(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質求解即可;(3)分三種情況求解:P為線段AB上的“好點”,P為線段AB延長線上的“好點”,P為線段BA延長線上的“好點”.【詳解】(1)真.理由如下:如圖,當∠ABC=90°時,M為PC中點,BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點”;(2)∵P為BA延長線上一個“好點”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M為PC中點,∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長線上的“好點”,找AP中點D,此時,D在AB延長線上,如圖,連結MD;此時,∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【點睛】本題考查了信息遷移,三角形外角的性質,直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質及分類討論的數(shù)學思想,理解“好點”的定義并能進行分類討論是解答本題的關鍵.21、(1)見解析;(2)60°.【解析】

(1)先證明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可證明;(2)連結BF,交AE于G.根據(jù)菱形的性質得出AB=2,AG=12AE=3【詳解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四邊形ABEF是平行四邊形,∵AB=BE,∴四邊形ABEF是菱形;(2)連結BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【點睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論