版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年浙江省杭州市蕭山區(qū)廂片五校中考數(shù)學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若函數(shù)與y=﹣2x﹣4的圖象的交點坐標為(a,b),則的值是()A.﹣4 B.﹣2 C.1 D.22.4的平方根是()A.4 B.±4 C.±2 D.23.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm4.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.85.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是()A.3 B.4 C.5 D.66.某青年排球隊12名隊員年齡情況如下:年齡1819202122人數(shù)14322則這12名隊員年齡的眾數(shù)、中位數(shù)分別是()A.20,19 B.19,19 C.19,20.5 D.19,207.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值28.二次函數(shù)y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.99.□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF10.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或2二、填空題(共7小題,每小題3分,滿分21分)11.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結(jié)論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結(jié)論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)33012.計算的結(jié)果是______.13.某商品原售價為100元,經(jīng)連續(xù)兩次漲價后售價為121元,設(shè)平均每次漲價的百分率為x,則依題意所列的方程是_____________.14.在Rt△ABC中,∠C=90°,AB=6,cosB=,則BC的長為_____.15.如圖,將的邊繞著點順時針旋轉(zhuǎn)得到,邊AC繞著點A逆時針旋轉(zhuǎn)得到,聯(lián)結(jié).當時,我們稱是的“雙旋三角形”.如果等邊的邊長為a,那么它的“雙旋三角形”的面積是__________(用含a的代數(shù)式表示).16.已知a、b是方程x2﹣2x﹣1=0的兩個根,則a2﹣a+b的值是_______.17.函數(shù)y=中,自變量x的取值范圍是________.三、解答題(共7小題,滿分69分)18.(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.若將這種水果每斤的售價降低x元,則每天的銷售量是斤(用含x的代數(shù)式表示);銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?19.(5分)先化簡,再求值,,其中x=1.20.(8分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點坐標;如圖2,若P點從A點出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當點P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點共線,求此時∠APB的度數(shù)及P點坐標.21.(10分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.22.(10分)為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學生人數(shù)為
人,參加球類活動的人數(shù)的百分比為
(2)請把圖2(條形統(tǒng)計圖)補充完整;
(3)該校學生共600人,則參加棋類活動的人數(shù)約為.
(4)該班參加舞蹈類活動的4位同學中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準備從中選取兩名同學組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
23.(12分)如圖,在△ABC中,AB=AC,D為BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,求證:DE=DF.24.(14分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
求出兩函數(shù)組成的方程組的解,即可得出a、b的值,再代入求值即可.【詳解】解方程組,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交點坐標是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故選B.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題和解方程組等知識點,關(guān)鍵是求出a、b的值.2、C【解析】
根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個數(shù)x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.3、B【解析】
首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長==4π,
故選B.【點睛】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.4、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.5、C【解析】
根據(jù)等腰三角形的性質(zhì)可得BE=BC=2,再根據(jù)三角形中位線定理可求得BD、DE長,根據(jù)三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點,∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.【點睛】本題考查了等腰三角形的性質(zhì)、三角形中位線定理,熟練掌握三角形中位線定理是解題的關(guān)鍵.6、D【解析】
先計算出這個隊共有1+4+3+2+2=12人,然后根據(jù)眾數(shù)與中位數(shù)的定義求解.【詳解】這個隊共有1+4+3+2+2=12人,這個隊隊員年齡的眾數(shù)為19,中位數(shù)為=1.故選D.【點睛】本題考查了眾數(shù):在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)叫這組數(shù)據(jù)的眾數(shù).也考查了中位數(shù)的定義.7、D【解析】設(shè)拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.8、D【解析】
直接利用配方法得出二次函數(shù)的頂點式進而得出答案.【詳解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函數(shù)y=﹣x2﹣4x+5的最大值是9,故選D.【點睛】此題主要考查了二次函數(shù)的最值,正確配方是解題關(guān)鍵.9、B【解析】【分析】根據(jù)平行線的判定方法結(jié)合已知條件逐項進行分析即可得.【詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【點睛】本題考查了平行四邊形的性質(zhì)與判定,熟練掌握平行四邊形的判定定理與性質(zhì)定理是解題的關(guān)鍵.10、C【解析】
過B作直徑,連接AC交AO于E,如圖①,根據(jù)已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點睛】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、不合理,樣本數(shù)據(jù)不具有代表性【解析】
根據(jù)表中所取的樣本不具有代表性即可得到結(jié)論.【詳解】不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【點睛】本題考查了統(tǒng)計表,認真分析表中數(shù)據(jù)是解題的關(guān)鍵.12、【解析】
二次根式的加減運算,先化為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并.【詳解】.【點睛】考點:二次根式的加減法.13、100(1+x)2=121【解析】
根據(jù)題意給出的等量關(guān)系即可求出答案.【詳解】由題意可知:100(1+x)2=121故答案為:100(1+x)2=121【點睛】本題考查一元二次方程的應用,解題的關(guān)鍵是正確找出等量關(guān)系,本題屬于基礎(chǔ)題型.14、4【解析】
根據(jù)銳角的余弦值等于鄰邊比對邊列式求解即可.【詳解】∵∠C=90°,AB=6,∴,∴BC=4.【點睛】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義是解答本題的關(guān)鍵.在Rt△ABC中,,,.15、.【解析】
首先根據(jù)等邊三角形、“雙旋三角形”的定義得出△AB'C'是頂角為150°的等腰三角形,其中AB'=AC'=a.過C'作C'D⊥AB'于D,根據(jù)30°角所對的直角邊等于斜邊的一半得出C'DAC'a,然后根據(jù)S△AB'C'AB'?C'D即可求解.【詳解】∵等邊△ABC的邊長為a,∴AB=AC=a,∠BAC=60°.∵將△ABC的邊AB繞著點A順時針旋轉(zhuǎn)α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.∵邊AC繞著點A逆時針旋轉(zhuǎn)β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如圖,過C'作C'D⊥AB'于D,則∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'?C'Da?aa1.故答案為:a1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了含30°角的直角三角形的性質(zhì),等邊三角形的性質(zhì)以及三角形的面積.16、1【解析】
根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系,可得出a2-2a=1、a+b=2,將其代入a2-a+b中即可求出結(jié)論.【詳解】∵a、b是方程x2-2x-1=0的兩個根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案為1.【點睛】本題考查根與系數(shù)的關(guān)系以及一元二次方程的解,牢記兩根之和等于-、兩根之積等于是解題的關(guān)鍵.17、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)100+200x;(2)1.【解析】試題分析:(1)銷售量=原來銷售量﹣下降銷售量,列式即可得到結(jié)論;(2)根據(jù)銷售量×每斤利潤=總利潤列出方程求解即可得到結(jié)論.試題解析:(1)將這種水果每斤的售價降低x元,則每天的銷售量是100+×20=100+200x斤;(2)根據(jù)題意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:張阿姨需將每斤的售價降低1元.考點:1.一元二次方程的應用;2.銷售問題;3.綜合題.19、1.【解析】
先根據(jù)分式的運算法則進行化簡,再代入求值.【詳解】解:原式=()×=×=;將x=1代入原式==1.【點睛】分式的化簡求值20、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】
(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質(zhì)得到BH=OA=3,CH=OB=1,求出OH,得到C點坐標;(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質(zhì)得到PA=CQ;(3)根據(jù)C、P,Q三點共線,得到∠BQC=135°,根據(jù)全等三角形的性質(zhì)得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質(zhì)求出OP,得到P點坐標.【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點坐標為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當C、P,Q三點共線時,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點坐標為(1,0).【點睛】本題考查的是全等三角形的判定和性質(zhì)、三角形的外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.21、;【解析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計算可得.【詳解】原式=÷(﹣)===,當a=2cos30°+1=2×+1=+1,b=tan45
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借貸八厘合同模板
- 出資供建合同模板
- 外包餐廳合同模板
- 公租房辦公合同范例
- 單方出資合伙合同范例范例
- 醫(yī)療機構(gòu)遠程診療技術(shù)應用合同
- 公版采購合同范例
- 個人委托購房合同范例
- 中英工程合同范例
- 健康醫(yī)療領(lǐng)域移動醫(yī)療應用軟件開發(fā)研究
- 19S406建筑排水管道安裝-塑料管道
- 江西省南昌市民德學校2023-2024學年八年級上學期期中數(shù)學試題
- 炎癥性腸病自我管理
- 新產(chǎn)品上市策劃及營銷課件
- 2023年度學校食堂每月食品安全調(diào)度會議紀要
- 建筑門窗、幕墻安裝工人安全技術(shù)操作規(guī)程
- 電視主持人勞動合同書
- 磁新材料科技有限公司20萬噸超純鐵精粉項目環(huán)評可研資料環(huán)境影響
- 大學生食品工作方面的生涯發(fā)展報告
- 項目部單機油耗分析報告
- 基于Android的天氣預報系統(tǒng)的設(shè)計與實現(xiàn)
評論
0/150
提交評論