我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案_第1頁
我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案_第2頁
我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案_第3頁
我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案_第4頁
我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教

我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案「篇一」

教材分析

本節(jié)課的主題:通過一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平

方公式的兩種形式:

1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探

究過程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)

系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對(duì)可能的答案做出假設(shè)與猜想,并通過多次

的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知

識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方

法。

學(xué)情分析

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:

①同類項(xiàng)的定義。

②合并同類項(xiàng)法則

③多項(xiàng)式乘以多項(xiàng)式法則o

2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目

的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

教學(xué)目標(biāo)

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號(hào)感和推力能力。

2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

(-)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過程,認(rèn)識(shí)有理數(shù)、實(shí)

數(shù)、代數(shù)式;掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和

變化規(guī)律,并能運(yùn)用代數(shù)式;不等式、函數(shù)等進(jìn)行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋

求解決問題的方法,并能有效地解決問題,嘗試評(píng)價(jià)不同方法之間的差異;通過對(duì)

解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。

(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用

知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從

交流中獲益。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。

難點(diǎn):會(huì)推導(dǎo)完全平方公式

教學(xué)過程

教學(xué)過程設(shè)計(jì)如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過

運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?

(2m+3n)2=,(-2m~3n)2=?

(2m-3n)2=,(-2m+3n)2=。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2。

(2m-3n)2=4m2T2mn+9n2,(-2m+3n)2=4m272mn+9n2。

(1)原式的特點(diǎn)。

(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。

(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。

(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2?

〈三〉、運(yùn)用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=,(m-n)2=。

(-m+n)2=,(-m-n)2=?

(a+3)2-,(-c+5)2-。

(-7-a)2=(0.5-a)2=□

2、判斷:

①(a-2b)2=a2-2ab+b2

②(2m+n)2=2m2+4mn+n2

③(-n-3m)2=n2-6mn+9m2

④(5a+0.2b)2=25a2+5ab+0.4b2

⑤(5a-0.2b)2=5a2-5ab+0.04b2

⑥(-a-2b)2=(a+2b)2

⑦(2a-4b)2=(4a-2b)2

⑧(-5m+n)2=(-n+5m)2

3、一現(xiàn)身手

①(x+y)2=;②(-y-x)2=_

③(2x+3)2=;④(3a-2)2=_

⑤(2x+3y)2=;⑥(4x-5y)2=_

⑦(0.5m+n)2=;⑧(a-0.6b)2=

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項(xiàng)。

(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。

(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。

(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。

〈五〉、探險(xiǎn)之旅

(1)(-3a+2b)2=

(2)(-7-2m)2=______________________________________

(3)(-0.5m+2n)2=

(4)(3/5a-l/2b)2=____________________________________

(5)(mn+3)2-______________________________

(6)(a2b-0.2)2=__________________________________

(7)(2xy2-3x2y)2=_

(8)(2n3-3m3)2=...

板書設(shè)計(jì)

完全平方公式

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

(a+b)2=a2+2ab+b2;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案「篇二」

教材分析

1、本小節(jié)內(nèi)容安排在第十四章“軸對(duì)稱”的第三節(jié)。等腰三角形是一種特殊

的三角形,它是軸對(duì)稱圖形,可以借助軸對(duì)稱變換來研究等腰三角形的一些特殊性

質(zhì)。這一節(jié)的主要內(nèi)容是等腰三角形的性質(zhì)與判定,以及等邊三角形的相關(guān)知識(shí),

重點(diǎn)是等腰三角形的性質(zhì)與判定,它是研究等邊三角形,是證明線段相等角相等的

重要依據(jù),這也是全章的重點(diǎn)之一。

2、本節(jié)重在呈現(xiàn)一個(gè)動(dòng)手操作得出概念、觀察實(shí)驗(yàn)得出性質(zhì)、推理證明論證

性質(zhì)的過程,學(xué)生通過學(xué)習(xí),既體會(huì)到一個(gè)觀察、實(shí)驗(yàn)、猜想、論證的研究幾何圖

形問題的全過程,又能夠運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運(yùn)用知識(shí)和

技能解決問題的能力。

學(xué)情分析

1、學(xué)生在此之前已接觸過等腰三角形,具有運(yùn)用全等三角形的判定及軸對(duì)稱

的知識(shí)和技能,本節(jié)教學(xué)要突出“自主探究”的特點(diǎn),即教師引導(dǎo)學(xué)生通過觀察、

實(shí)驗(yàn)、猜想、論證,得出等腰三角形的性質(zhì),讓學(xué)生做學(xué)習(xí)的主人,享受探求新

知、獲得新知的樂趣。

2、在與等腰三角形有關(guān)的一些命題的證明過程中,會(huì)遇到一些添加輔助線的

問題,這會(huì)給學(xué)生的學(xué)習(xí)帶來困難。另外,以前學(xué)生證明問題是習(xí)慣于找全等三角

形,形成了依賴全等三角形的思維定勢(shì),對(duì)于可直接利用等腰三角形性質(zhì)的問題,

沒有注意選擇簡(jiǎn)便方法。

教學(xué)目標(biāo)

知識(shí)技能:1、理解掌握等腰三角形的性質(zhì)。

2、運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。

數(shù)學(xué)思考:1、觀察等腰三角形的對(duì)稱性,發(fā)展形象思維。

2、通過時(shí)間、觀察、證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推

理能力。

情感態(tài)度:引導(dǎo)學(xué)生對(duì)圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在

運(yùn)用數(shù)學(xué)知識(shí)解決問題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):等腰三角形的性質(zhì)及應(yīng)用。

難點(diǎn):等腰三角形的性質(zhì)證明。

我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案「篇三」

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn),理解簡(jiǎn)單

圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)

稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。

2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和

整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀

念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

重點(diǎn)與難點(diǎn):

重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。

難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。

疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖

教具學(xué)具準(zhǔn)備:

提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、

臨摹以及。多種常見的圖案及其形成過程的動(dòng)畫演示。

教學(xué)過程設(shè)計(jì):

1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生

試著說一說每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)

明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)

備。對(duì)教材給出的六個(gè)圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的

設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖

(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說

說每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以

通過軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖⑵可以通

過平移形成。

2、課本

1欣賞課本75頁圖3—24的圖案,并分析這個(gè)圖案形成過程。

評(píng)注:圖案是密鋪圖案的代表,旨在通過對(duì)典型圖案的分析欣賞,使學(xué)生逐步

能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例

題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋

轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。

評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過變換得到。而且變化方式

也可以是:左下角的圖案通過軸對(duì)稱變換得到左上圖和右下圖。

(二)課內(nèi)練習(xí)

(1)以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班

交流。

(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行

圖案設(shè)計(jì),并簡(jiǎn)要說明自己的設(shè)計(jì)意圖。

(三)議一議

生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交

流。

(四)課時(shí)小結(jié)

本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)

用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。

通過今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋

轉(zhuǎn)、軸對(duì)稱等多種方法來設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是

圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)

八年級(jí)數(shù)學(xué)上冊(cè)教案(五)延伸拓展

進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析

它的設(shè)計(jì)意圖。

我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案「篇四」

教學(xué)內(nèi)容分析:

⑴學(xué)習(xí)特殊的平行四邊形一正方形,它的特殊的性質(zhì)和判定。

⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對(duì)正方

形的研究。

⑶對(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識(shí)的聯(lián)

系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。

學(xué)生分析:

⑴學(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四

邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。

⑵學(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成

熟,有待于提高。

教學(xué)目標(biāo):

⑴知識(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利

用性質(zhì)與判定進(jìn)行簡(jiǎn)單的說理。

⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判

定。通過運(yùn)用提高學(xué)生的推理能力。

⑶情感態(tài)度與價(jià)值觀:在學(xué)習(xí)中體會(huì)正方形的完美性,通過活動(dòng)獲得成功的喜

悅與自信。

重點(diǎn):

掌握正方形的性質(zhì)與判定,并進(jìn)行簡(jiǎn)單的推理。

難點(diǎn):

探索正方形的判定,發(fā)展學(xué)生的推理能

教學(xué)方法:

類比與探究

教具準(zhǔn)備:

可以活動(dòng)的四邊形模型。

教學(xué)過程:

復(fù)習(xí)鞏固,建立聯(lián)系。

【教師活動(dòng)】

問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

②的四邊形是平行四邊形。的平行四邊形是矩形。的平行四邊形是菱形。的四

邊形是矩形。的四邊形是菱形。

【學(xué)生活動(dòng)】

學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說出更多的答案。

【教師活動(dòng)】

評(píng)析學(xué)生的結(jié)果,給予表揚(yáng)。

總結(jié)性質(zhì)從邊角對(duì)角線考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者

之間的聯(lián)系與區(qū)別。

演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

二:動(dòng)手操作,探索發(fā)現(xiàn)。

活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長(zhǎng)AD邊上,如下圖所

示,沿著B'E剪下,能得到什么圖形?

【學(xué)生活動(dòng)】

學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。

設(shè)置問題:①什么是正方形?

觀察發(fā)現(xiàn),從活動(dòng)中體會(huì)。

【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

【學(xué)生活動(dòng)】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。

設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

【學(xué)生活動(dòng)】

小組討論,分組回答。

【教師活動(dòng)】

總結(jié)板書:

㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。

設(shè)置問題③正方形有那些性質(zhì)?

【學(xué)生活動(dòng)】

小組討論,舉手搶答。

【教師活動(dòng)】

表揚(yáng)學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),。正方形每一條對(duì)角線平分一組對(duì)角

活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱圖形嗎?有幾條對(duì)

稱軸?

學(xué)生活動(dòng)

折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱圖形。

教師活動(dòng)

演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號(hào)內(nèi)容,出示一下問

題:你還可以怎樣填空?

的菱形是正方形,的矩形是正方形,的平行四邊形是正方形,的四邊形是正方

形。

學(xué)生活動(dòng)

小組充分交流,表達(dá)不同的意見。

教師活動(dòng)

評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):

一組鄰邊相等的矩形是正方形,對(duì)角線互相平分的矩形是正方形;

有一個(gè)角是直角的菱形是正方形,對(duì)角線相等的菱形是正方形;

有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線相等且互相

平分的平行四邊形是正方形;

四邊相等且有一角是直角的四邊形是正方形,對(duì)角線相等且互相垂直平分的四

邊形是正方形。

以上是正方形的'判定方法。

正方形是一個(gè)多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪

里?生活中有哪些利用正方形的例子?

學(xué)生交流,感受正方形

三,應(yīng)用體驗(yàn),推理證明。

出示例一:正方形ABCD的兩條對(duì)角線AC,BD交與0,AB長(zhǎng)4cm,求AC,A0長(zhǎng),

及的度數(shù)。

方法一解:???四邊形ABCD是正方形

AZABC=90°(正方形的四個(gè)角是直角)。

BC=AB=4cm(正方形的四條邊相等)

/.=45°(等腰直角三角形的底角是45°)

利用勾股定理可知,AC===4cm

VA0=AC(正方形的對(duì)角線互相平分)

/.A0=義4=2cm

方法二:證明AAOB是等腰直角三角形,即可得證。

學(xué)生活動(dòng)

獨(dú)立思考,寫出推理過程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板

上,共同交流。

教師活動(dòng)

總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解

題步驟,表揚(yáng)突出學(xué)生。

出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且

AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

學(xué)生活動(dòng)

小組交流,分析題意,整理思路,指名口答。

教師活動(dòng)

說明思路,從已知出發(fā)或者從已有的判定加以選擇。

四,歸納新知,梳理知識(shí)。

這一節(jié)課你有什么收獲?

學(xué)生舉手談?wù)撟约旱氖斋@。

請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們

的關(guān)系。

發(fā)表評(píng)論

我們身邊的軸對(duì)稱圖形八年級(jí)數(shù)學(xué)教案「篇五」

一、教學(xué)目標(biāo)

1、理解一個(gè)數(shù)平方根和算術(shù)平方根的意義;

2、理解根號(hào)的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的平方根和算術(shù)平方根;

3、通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;

4、通過學(xué)習(xí)乘方和開方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對(duì)立統(tǒng)一的辯證

關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。

二、教學(xué)重點(diǎn)和難點(diǎn)

教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。

教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。

三、教學(xué)方法

講練結(jié)合

四、教學(xué)手段

幻燈片

五、教學(xué)過程

(-)提問

1、已知一正方形面積為50平方米,那么它的邊長(zhǎng)應(yīng)為多少?

2、已知一個(gè)數(shù)的平方等于1000,那么這個(gè)數(shù)是多少?

3、一只容積為0.125立方米的正方體容器,它的棱長(zhǎng)應(yīng)為多少?

這些問題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題

呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個(gè)小練習(xí):

學(xué)生在完成此練習(xí)時(shí).,最容易出現(xiàn)的錯(cuò)誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾

正。

由練習(xí)引出平方根的概念。

(二)平方根概念

如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(二次方根)。

用數(shù)學(xué)語言表達(dá)即為:若x2=a,則x叫做a的平方根。

由練習(xí)知:±3是9的平方根;

±0.5是0.25的平方根;

0的平方根是0;

±0.09是0。0081的平方根。

由此我們看到+3與一3均為9的平方根,0的平方根是0,下面看這樣一道

題,填空:

()2=—4

學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的

平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒有平方根的。下面總結(jié)一下平方

根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。

(三)平方根性質(zhì)

1、一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù)。

2、0有一個(gè)平方根,它是0本身。

3、負(fù)數(shù)沒有平方根。

(四)開平方

求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方的運(yùn)算。

由練習(xí)我們看到+3與一3的平方是9,9的平方根是+3和一3,可見平方運(yùn)算

與開平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過平方運(yùn)算來求一個(gè)數(shù)的平

方根。與其他運(yùn)算法則不同之處在于只能對(duì)非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果

是兩個(gè)。

(五)平方根的表示方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論