2024屆湖北省荊門市京山市重點(diǎn)名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁(yè)
2024屆湖北省荊門市京山市重點(diǎn)名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁(yè)
2024屆湖北省荊門市京山市重點(diǎn)名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁(yè)
2024屆湖北省荊門市京山市重點(diǎn)名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁(yè)
2024屆湖北省荊門市京山市重點(diǎn)名校中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆湖北省荊門市京山市重點(diǎn)名校中考數(shù)學(xué)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列分子結(jié)構(gòu)模型的平面圖中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個(gè)標(biāo)志中,是軸對(duì)稱圖形的是()A. B. C. D.3.下列各式中,計(jì)算正確的是()A. B.C. D.4.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長(zhǎng)度之比為A. B. C. D.5.如圖,在平行四邊形ABCD中,F(xiàn)是邊AD上的一點(diǎn),射線CF和BA的延長(zhǎng)線交于點(diǎn)E,如果,那么的值是()A. B. C. D.6.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結(jié)論有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)7.如圖,點(diǎn)A為∠α邊上任意一點(diǎn),作AC⊥BC于點(diǎn)C,CD⊥AB于點(diǎn)D,下列用線段比表示sinα的值,錯(cuò)誤的是()A. B. C. D.8.如圖1,將三角板的直角頂點(diǎn)放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°9.如圖,點(diǎn)A、B、C在圓O上,若∠OBC=40°,則∠A的度數(shù)為()A.40° B.45° C.50° D.55°10.如圖,在邊長(zhǎng)為3的等邊三角形ABC中,過(guò)點(diǎn)C垂直于BC的直線交∠ABC的平分線于點(diǎn)P,則點(diǎn)P到邊AB所在直線的距離為()A.33 B.32 C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點(diǎn),連接EF,使四邊形ABFE為正方形,若點(diǎn)G是AD上的動(dòng)點(diǎn),連接FG,將矩形沿FG折疊使得點(diǎn)C落在正方形ABFE的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為P,則線段AP的長(zhǎng)為______.12.已知x3=y13.已知,大正方形的邊長(zhǎng)為4厘米,小正方形的邊長(zhǎng)為2厘米,起始狀態(tài)如圖所示,大正方形固定不動(dòng),把小正方形向右平移,當(dāng)兩個(gè)正方形重疊部分的面積為2平方厘米時(shí),小正方形平移的距離為_____厘米.14.在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個(gè)三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長(zhǎng)分別為2,4,3,則原直角三角形紙片的斜邊長(zhǎng)是_______.15.已知m、n是一元二次方程x2+4x﹣1=0的兩實(shí)數(shù)根,則=_____.16.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)得到矩形GBEF,點(diǎn)A落在矩形ABCD的邊CD上,連接CE,則CE的長(zhǎng)是________.三、解答題(共8題,共72分)17.(8分)某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)50臺(tái)機(jī)器,現(xiàn)在生產(chǎn)600臺(tái)機(jī)器所需要時(shí)間與原計(jì)劃生產(chǎn)450臺(tái)機(jī)器所需時(shí)間相同.現(xiàn)在平均每天生產(chǎn)多少臺(tái)機(jī)器;生產(chǎn)3000臺(tái)機(jī)器,現(xiàn)在比原計(jì)劃提前幾天完成.18.(8分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過(guò)P(1,﹣m)作PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(1)若m=2,求點(diǎn)A和點(diǎn)C的坐標(biāo);(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標(biāo)軸上是否存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.19.(8分)在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準(zhǔn)備把“茶路”融入“絲路”,經(jīng)計(jì)算,他銷售10kgA級(jí)別和20kgB級(jí)別茶葉的利潤(rùn)為4000元,銷售20kgA級(jí)別和10kgB級(jí)別茶葉的利潤(rùn)為3500元.(1)求每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤(rùn);(2)若該經(jīng)銷商一次購(gòu)進(jìn)兩種級(jí)別的茶葉共200kg用于出口,其中B級(jí)別茶葉的進(jìn)貨量不超過(guò)A級(jí)別茶葉的2倍,請(qǐng)你幫該經(jīng)銷商設(shè)計(jì)一種進(jìn)貨方案使銷售總利潤(rùn)最大,并求出總利潤(rùn)的最大值.20.(8分)先化簡(jiǎn)分式:(-)÷?,再?gòu)?3、-3、2、-2中選一個(gè)你喜歡的數(shù)作為的值代入求值.21.(8分)如圖,在△ABC中,∠ACB=90°,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O與BC相切于點(diǎn)D,與AB交于點(diǎn)E,連接ED并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長(zhǎng).22.(10分)(問(wèn)題情境)張老師給愛(ài)好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問(wèn)題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過(guò)點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過(guò)點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過(guò)點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.23.(12分)如圖1,AB為半圓O的直徑,半徑的長(zhǎng)為4cm,點(diǎn)C為半圓上一動(dòng)點(diǎn),過(guò)點(diǎn)C作CE⊥AB,垂足為點(diǎn)E,點(diǎn)D為弧AC的中點(diǎn),連接DE,如果DE=2OE,求線段AE的長(zhǎng).小何根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),將此問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題解決.小華假設(shè)AE的長(zhǎng)度為xcm,線段DE的長(zhǎng)度為ycm.(當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),AE的長(zhǎng)度為0cm),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.下面是小何的探究過(guò)程,請(qǐng)補(bǔ)充完整:(說(shuō)明:相關(guān)數(shù)據(jù)保留一位小數(shù)).(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:x/cm012345678y/cm01.62.53.34.04.75.85.7當(dāng)x=6cm時(shí),請(qǐng)你在圖中幫助小何完成作圖,并使用刻度尺度量此時(shí)線段DE的長(zhǎng)度,填寫在表格空白處:(2)在圖2中建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;(3)結(jié)合畫出的函數(shù)圖象解決問(wèn)題,當(dāng)DE=2OE時(shí),AE的長(zhǎng)度約為cm.24.某數(shù)學(xué)興趣小組為測(cè)量如圖(①所示的一段古城墻的高度,設(shè)計(jì)用平面鏡測(cè)量的示意圖如圖②所示,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過(guò)平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測(cè)得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計(jì)):請(qǐng)你設(shè)計(jì)一個(gè)測(cè)量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡(jiǎn)要的計(jì)算過(guò)程:③給出的方案不能用到圖②的方法.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A是軸對(duì)稱圖形,不是中心對(duì)稱圖形;B,C,D是軸對(duì)稱圖形,也是中心對(duì)稱圖形.故選:C.【點(diǎn)睛】掌握中心對(duì)稱圖形與軸對(duì)稱圖形的概念:軸對(duì)稱圖形:如果一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形;中心對(duì)稱圖形:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形.2、D【解析】

根據(jù)軸對(duì)稱圖形的概念求解.如果一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸.【詳解】A、不是軸對(duì)稱圖形,故A不符合題意;B、不是軸對(duì)稱圖形,故B不符合題意;C、不是軸對(duì)稱圖形,故C不符合題意;D、是軸對(duì)稱圖形,故D符合題意.故選D.【點(diǎn)睛】本題主要考查軸對(duì)稱圖形的知識(shí)點(diǎn).確定軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合.3、C【解析】

接利用合并同類項(xiàng)法則以及積的乘方運(yùn)算法則、同底數(shù)冪的乘除運(yùn)算法則分別計(jì)算得出答案.【詳解】A、無(wú)法計(jì)算,故此選項(xiàng)錯(cuò)誤;B、a2?a3=a5,故此選項(xiàng)錯(cuò)誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了合并同類項(xiàng)以及積的乘方運(yùn)算、同底數(shù)冪的乘除運(yùn)算,正確掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.4、B【解析】

在兩個(gè)直角三角形中,分別求出AB、AD即可解決問(wèn)題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問(wèn)題.5、D【解析】分析:根據(jù)相似三角形的性質(zhì)進(jìn)行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點(diǎn)睛:考查相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.6、B【解析】

①觀察圖象可知a<0,b>0,c>0,由此即可判定①;②當(dāng)x=﹣1時(shí),y=a﹣b+c由此可判定②;③由對(duì)稱知,當(dāng)x=2時(shí),函數(shù)值大于0,即y=4a+2b+c>0,由此可判定③;④當(dāng)x=3時(shí)函數(shù)值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤當(dāng)x=1時(shí),y的值最大.此時(shí),y=a+b+c,當(dāng)x=n時(shí),y=an2+bn+c,由此即可判定⑤.【詳解】①由圖象可知:a<0,b>0,c>0,abc<0,故此選項(xiàng)錯(cuò)誤;②當(dāng)x=﹣1時(shí),y=a﹣b+c<0,即b>a+c,故此選項(xiàng)錯(cuò)誤;③由對(duì)稱知,當(dāng)x=2時(shí),函數(shù)值大于0,即y=4a+2b+c>0,故此選項(xiàng)正確;④當(dāng)x=3時(shí)函數(shù)值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此選項(xiàng)正確;⑤當(dāng)x=1時(shí),y的值最大.此時(shí),y=a+b+c,而當(dāng)x=n時(shí),y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此選項(xiàng)正確.∴③④⑤正確.故選B.【點(diǎn)睛】本題主要考查了拋物線的圖象與二次函數(shù)系數(shù)之間的關(guān)系,熟知拋物線的圖象與二次函數(shù)系數(shù)之間的關(guān)系是解決本題的關(guān)鍵.7、D【解析】【分析】根據(jù)在直角三角形中,銳角的正弦為對(duì)邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯(cuò)誤,符合題意,故選D.【點(diǎn)睛】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.8、D【解析】試題分析:根據(jù)平行線的性質(zhì),得∠4=∠2=50°,再根據(jù)三角形的外角的性質(zhì)∠3=∠4-∠1=50°-30°=20°.故答案選D.考點(diǎn):平行線的性質(zhì);三角形的外角的性質(zhì).9、C【解析】

根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12【點(diǎn)睛】考查了圓周角定理.在同圓或等圓中,一條弧所對(duì)的圓周角是它所對(duì)的圓心角的一半.10、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點(diǎn):1.角平分線的性質(zhì);2.等邊三角形的性質(zhì);3.含30度角的直角三角形;4.勾股定理.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1或1﹣2【解析】

當(dāng)點(diǎn)P在AF上時(shí),由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對(duì)角線AF的長(zhǎng),從而可得到PA的長(zhǎng);當(dāng)點(diǎn)P在BE上時(shí),由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長(zhǎng)為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點(diǎn)睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.12、7【解析】

由x3=y4可知xy【詳解】解:∵x3∴xy∴原式=xy【點(diǎn)睛】本題考查了分式的化簡(jiǎn)求值.13、1或5.【解析】

小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離.【詳解】解:當(dāng)兩個(gè)正方形重疊部分的面積為2平方厘米時(shí),重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點(diǎn)睛】此題考查了平移的性質(zhì),要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.14、45或1【解析】

先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長(zhǎng).【詳解】①如圖:因?yàn)锳C=22+4點(diǎn)A是斜邊EF的中點(diǎn),所以EF=2AC=45,②如圖:因?yàn)锽D=32點(diǎn)D是斜邊EF的中點(diǎn),所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長(zhǎng)是45或1,故答案是:45或1.【點(diǎn)睛】此題考查了圖形的剪拼,解題的關(guān)鍵是能夠根據(jù)題意畫出圖形,在解題時(shí)要注意分兩種情況畫圖,不要漏解.15、1【解析】

先由根與系數(shù)的關(guān)系求出m?n及m+n的值,再把化為的形式代入進(jìn)行計(jì)算即可.【詳解】∵m、n是一元二次方程x2+1x﹣1=0的兩實(shí)數(shù)根,∴m+n=﹣1,m?n=﹣1,∴===1.故答案為1.【點(diǎn)睛】本題考查的是根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系為:x1+x2=﹣,x1?x2=.16、【解析】

解:連接AG,由旋轉(zhuǎn)變換的性質(zhì)可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、相似三角形的判定和性質(zhì),掌握勾股定理、矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)現(xiàn)在平均每天生產(chǎn)1臺(tái)機(jī)器.(2)現(xiàn)在比原計(jì)劃提前5天完成.【解析】

(1)因?yàn)楝F(xiàn)在生產(chǎn)600臺(tái)機(jī)器的時(shí)間與原計(jì)劃生產(chǎn)450臺(tái)機(jī)器的時(shí)間相同.所以可得等量關(guān)系為:現(xiàn)在生產(chǎn)600臺(tái)機(jī)器時(shí)間=原計(jì)劃生產(chǎn)450臺(tái)時(shí)間,由此列出方程解答即可;(2)由(1)中解得的數(shù)據(jù),原來(lái)用的時(shí)間-現(xiàn)在用的時(shí)間即可求得提前時(shí)間.【詳解】解:(1)設(shè)現(xiàn)在平均每天生產(chǎn)x臺(tái)機(jī)器,則原計(jì)劃可生產(chǎn)(x-50)臺(tái).依題意得:,解得:x=1.檢驗(yàn)x=1是原分式方程的解.(2)由題意得=20-15=5(天)∴現(xiàn)在比原計(jì)劃提前5天完成.【點(diǎn)睛】此題考查分式方程的實(shí)際運(yùn)用,找出題目蘊(yùn)含的數(shù)量關(guān)系是解決問(wèn)題的關(guān)鍵.18、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);【解析】

方法一:(1)m=2時(shí),函數(shù)解析式為y=,分別令y=0,x=1,即可求得點(diǎn)A和點(diǎn)B的坐標(biāo),進(jìn)而可得到點(diǎn)C的坐標(biāo);(2)先用m表示出P,AC三點(diǎn)的坐標(biāo),分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過(guò)點(diǎn)F作FN⊥PM于N,可得Rt△FNP∽R(shí)t△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形求得E點(diǎn)坐標(biāo).方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形,分別討論E點(diǎn)再x軸上,y軸上的情況求得E點(diǎn)坐標(biāo).【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對(duì)稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對(duì)稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當(dāng)∠ACP=90°時(shí),PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當(dāng)∠APC=90°時(shí),PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過(guò)點(diǎn)F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽R(shí)t△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點(diǎn),使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(0,﹣4),∴在坐標(biāo)軸上是存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵對(duì)稱軸x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP為直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴KAP×KCP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴KCP=,△PEC是以P為直角頂點(diǎn)的等腰直角三角形,∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,∵P(1,﹣m),∴l(xiāng)PE:y=2x﹣2﹣m,∵點(diǎn)E在坐標(biāo)軸上,∴①當(dāng)點(diǎn)E在x軸上時(shí),E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E1(2,0),E2(,0),②當(dāng)點(diǎn)E在y軸上時(shí),E(0,﹣2﹣m)且PE=PC,∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴1=(m﹣1)2,∴m1=2,m2=0(舍),∴E(0,4),綜上所述,(2,0)或(,0)或(0,﹣4).【點(diǎn)睛】本題主要考查二次函數(shù)的圖象與性質(zhì).擴(kuò)展:設(shè)坐標(biāo)系中兩點(diǎn)坐標(biāo)分別為點(diǎn)A(),點(diǎn)B(),則線段AB的長(zhǎng)度為:AB=.設(shè)平面內(nèi)直線AB的解析式為:,直線CD的解析式為:(1)若AB//CD,則有:;(2)若AB⊥CD,則有:.19、(1)100元和150元;(2)購(gòu)進(jìn)A種級(jí)別的茶葉67kg,購(gòu)進(jìn)B種級(jí)別的茶葉133kg.銷售總利潤(rùn)最大為26650元.【解析】試題分析:(1)設(shè)每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤(rùn)分別為x元和y元;

(2)設(shè)購(gòu)進(jìn)A種級(jí)別的茶葉akg,購(gòu)進(jìn)B種級(jí)別的茶葉(200-a)kg.銷售總利潤(rùn)為w元.構(gòu)建一次函數(shù),利用一次函數(shù)的性質(zhì)即可解決問(wèn)題.試題解析:解:(1)設(shè)每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤(rùn)分別為x元和y元.由題意,解得,答:每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤(rùn)分別為100元和150元.(2)設(shè)購(gòu)進(jìn)A種級(jí)別的茶葉akg,購(gòu)進(jìn)B種級(jí)別的茶葉(200﹣a)kg.銷售總利潤(rùn)為w元.由題意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w隨x的增大而減小,∴當(dāng)a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴當(dāng)a=67時(shí),w最小=﹣50×67+30000=26650(元),此時(shí)200﹣67=133kg,答:購(gòu)進(jìn)A種級(jí)別的茶葉67kg,購(gòu)進(jìn)B種級(jí)別的茶葉133kg.銷售總利潤(rùn)最大為26650元.點(diǎn)睛:本題考查一次函數(shù)的應(yīng)用、二元一次方程組、不等式等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)利用參數(shù)構(gòu)建一次函數(shù)或方程解決問(wèn)題.20、;5【解析】

原式=(-)?=?=?=a=2,原式=521、(1)證明見(jiàn)解析;(2)1.【解析】

(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)解答即可;(2)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF=sin∠BDE=,∴CF=DF=1,∴AC=AF﹣CF=1.【點(diǎn)睛】本題考查了切線的性質(zhì),解直角三角形的應(yīng)用,等腰三角形的判定等,綜合性較強(qiáng),正確添加輔助線、熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.22、小軍的證明:見(jiàn)解析;小俊的證明:見(jiàn)解析;[變式探究]見(jiàn)解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】

小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過(guò)點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過(guò)點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過(guò)點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過(guò)點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論