嘉興市重點(diǎn)中學(xué)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第1頁
嘉興市重點(diǎn)中學(xué)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第2頁
嘉興市重點(diǎn)中學(xué)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第3頁
嘉興市重點(diǎn)中學(xué)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第4頁
嘉興市重點(diǎn)中學(xué)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

嘉興市重點(diǎn)中學(xué)2023-2024學(xué)年中考三模數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.方程的解是A.3 B.2 C.1 D.02.如圖,菱形ABCD的對角線相交于點(diǎn)O,過點(diǎn)D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點(diǎn)F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.3.如圖,在?ABCD中,BF平分∠ABC,交AD于點(diǎn)F,CE平分∠BCD,交AD于點(diǎn)E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.144.如圖,在中,,分別以點(diǎn)和點(diǎn)為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn)和點(diǎn),作直線交于點(diǎn),交于點(diǎn),連接.若,則的度數(shù)是()A. B. C. D.5.如圖,已知,為反比例函數(shù)圖象上的兩點(diǎn),動點(diǎn)在軸正半軸上運(yùn)動,當(dāng)線段與線段之差達(dá)到最大時,點(diǎn)的坐標(biāo)是()A. B. C. D.6.下列二次根式中,為最簡二次根式的是()A. B. C. D.7.我國古代數(shù)學(xué)著作《九章算術(shù)》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設(shè)有x人合買,這件物品y元,則根據(jù)題意列出的二元一次方程組為()A. B. C. D.8.已知,則的值是A.60 B.64 C.66 D.729.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤210.如圖,△ABC中,DE∥BC,,AE=2cm,則AC的長是()A.2cm B.4cm C.6cm D.8cm二、填空題(共7小題,每小題3分,滿分21分)11.對于一切不小于2的自然數(shù)n,關(guān)于x的一元二次方程x2﹣(n+2)x﹣2n2=0的兩個根記作an,bn(n≥2),則______12.如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,則∠CDA=°.13.如圖,在Rt△ABC中,AC=4,BC=3,將Rt△ABC以點(diǎn)A為中心,逆時針旋轉(zhuǎn)60°得到△ADE,則線段BE的長度為_____.14.已知雙曲線經(jīng)過點(diǎn)(-1,2),那么k的值等于_______.15.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點(diǎn)A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上時,則CD的長為_____.16.如圖,AB是⊙O的切線,B為切點(diǎn),AC經(jīng)過點(diǎn)O,與⊙O分別相交于點(diǎn)D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.17.平面直角坐標(biāo)系中一點(diǎn)P(m﹣3,1﹣2m)在第三象限,則m的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)已知關(guān)于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一個根,求m的值和方程①的另一根;對于任意實(shí)數(shù)m,判斷方程①的根的情況,并說明理由.19.(5分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D.過點(diǎn)D作EF⊥AC,垂足為E,且交AB的延長線于點(diǎn)F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.20.(8分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交射線OA于點(diǎn)E.(1)如圖①,點(diǎn)P在線段OA上,若∠OBQ=15°,求∠AQE的大?。唬?)如圖②,點(diǎn)P在OA的延長線上,若∠OBQ=65°,求∠AQE的大小.21.(10分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進(jìn)了這種禮盒并且全部售完;2016年,這種禮盒的進(jìn)價比2014年下降了11元/盒,該商店用2400元購進(jìn)了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.(1)2014年這種禮盒的進(jìn)價是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?22.(10分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.請根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請補(bǔ)全條形統(tǒng)計(jì)圖;(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計(jì)其中12﹣23歲的人數(shù)23.(12分)先化簡,再求值:1+xx2-124.(14分)對于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當(dāng)函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數(shù)y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗(yàn)x=3是分式方程的解.故選A.2、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點(diǎn)睛:本題考查了菱形的性質(zhì),先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.3、B【解析】試題分析:根據(jù)平行四邊形的性質(zhì)可知AB=CD,AD∥BC,AD=BC,然后根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點(diǎn)睛:此題主要考查了平行四邊形的性質(zhì)和等腰三角形的性質(zhì),解題關(guān)鍵是把所求線段轉(zhuǎn)化為題目中已知的線段,根據(jù)等量代換可求解.4、B【解析】

根據(jù)題意可知DE是AC的垂直平分線,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性質(zhì)即可求出∠CDA的度數(shù).【詳解】解:∵DE是AC的垂直平分線,

∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,

故選B.【點(diǎn)睛】本題考查作圖-基本作圖、線段的垂直平分線的性質(zhì)、等腰三角形的性質(zhì),三角形有關(guān)角的性質(zhì)等知識,解題的關(guān)鍵是熟練運(yùn)用這些知識解決問題,屬于中考??碱}型.5、D【解析】

求出AB的坐標(biāo),設(shè)直線AB的解析式是y=kx+b,把A、B的坐標(biāo)代入求出直線AB的解析式,根據(jù)三角形的三邊關(guān)系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當(dāng)P在P′點(diǎn)時,PA-PB=AB,此時線段AP與線段BP之差達(dá)到最大,求出直線AB于x軸的交點(diǎn)坐標(biāo)即可.【詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關(guān)系定理得:,延長交軸于,當(dāng)在點(diǎn)時,,即此時線段與線段之差達(dá)到最大,設(shè)直線的解析式是,把,的坐標(biāo)代入得:,解得:,直線的解析式是,當(dāng)時,,即,故選D.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理和用待定系數(shù)法求一次函數(shù)的解析式的應(yīng)用,解此題的關(guān)鍵是確定P點(diǎn)的位置,題目比較好,但有一定的難度.6、B【解析】

最簡二次根式必須滿足以下兩個條件:1.被開方數(shù)的因數(shù)是(整數(shù)),因式是(整式)(分母中不含根號)2.被開方數(shù)中不含能開提盡方的(因數(shù))或(因式).【詳解】A.=3,不是最簡二次根式;B.,最簡二次根式;C.=,不是最簡二次根式;D.=,不是最簡二次根式.故選:B【點(diǎn)睛】本題考核知識點(diǎn):最簡二次根式.解題關(guān)鍵點(diǎn):理解最簡二次根式條件.7、D【解析】

根據(jù)題意可以找出題目中的等量關(guān)系,列出相應(yīng)的方程組,從而可以解答本題.【詳解】由題意可得:,故選D.【點(diǎn)睛】本題考查由實(shí)際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.8、A【解析】

將代入原式,計(jì)算可得.【詳解】解:當(dāng)時,原式,故選A.【點(diǎn)睛】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握完全平方公式.9、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0.當(dāng)Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當(dāng)拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0時,設(shè)拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.10、C【解析】

由∥可得△ADE∽△ABC,再根據(jù)相似三角形的性質(zhì)即可求得結(jié)果.【詳解】∵∥∴△ADE∽△ABC∴∵∴AC=6cm故選C.考點(diǎn):相似三角形的判定和性質(zhì)點(diǎn)評:解答本題的關(guān)鍵是熟練掌握相似三角形的對應(yīng)邊成比例,注意對應(yīng)字母在對應(yīng)位置上.二、填空題(共7小題,每小題3分,滿分21分)11、﹣.【解析】試題分析:由根與系數(shù)的關(guān)系得:,則,則,∴原式=.點(diǎn)睛:本題主要考查的就是一元二次方程的韋達(dá)定理以及規(guī)律的整理,屬于中等題型.解決這個問題的關(guān)鍵就是要想到使用韋達(dá)定理,然后根據(jù)計(jì)算的法則得出規(guī)律,從而達(dá)到簡便計(jì)算的目的.12、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點(diǎn):切線的性質(zhì).13、【解析】

連接CE,作EF⊥BC于F,根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到∠CAE=60°,AC=AE,根據(jù)等邊三角形的性質(zhì)得到CE=AC=4,∠ACE=60°,根據(jù)直角三角形的性質(zhì)、勾股定理計(jì)算即可.【詳解】解:連接CE,作EF⊥BC于F,

由旋轉(zhuǎn)變換的性質(zhì)可知,∠CAE=60°,AC=AE,

∴△ACE是等邊三角形,

∴CE=AC=4,∠ACE=60°,

∴∠ECF=30°,

∴EF=CE=2,

由勾股定理得,CF==,

∴BF=BC-CF=,

由勾股定理得,BE==,

故答案為:.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的判定和性質(zhì),掌握旋轉(zhuǎn)變換對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等、對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角是解題的關(guān)鍵.14、-1【解析】

分析:根據(jù)點(diǎn)在曲線上點(diǎn)的坐標(biāo)滿足方程的關(guān)系,將點(diǎn)(-1,2)代入,得:,解得:k=-1.15、1.1.【解析】分析:由將△ABC繞點(diǎn)A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉(zhuǎn)的性質(zhì)可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點(diǎn)睛:此題考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.16、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.17、0.5<m<3【解析】

根據(jù)第三象限內(nèi)點(diǎn)的橫坐標(biāo)與縱坐標(biāo)都是負(fù)數(shù)列式不等式組,然后求解即可.【詳解】∵點(diǎn)P(m?3,1?2m)在第三象限,∴,解得:0.5<m<3.故答案為:0.5<m<3.【點(diǎn)睛】本題考查了解一元二次方程組與象限及點(diǎn)的坐標(biāo)的有關(guān)性質(zhì),解題的關(guān)鍵是熟練的掌握解一元二次方程組與象限及點(diǎn)的坐標(biāo)的有關(guān)性質(zhì).三、解答題(共7小題,滿分69分)18、(1)方程的另一根為x=2;(2)方程總有兩個不等的實(shí)數(shù)根,理由見解析.【解析】試題分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一個根;(2)利用一元二次方程根的情況可以轉(zhuǎn)化為判別式△與1的關(guān)系進(jìn)行判斷.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有兩個不相等的實(shí)數(shù)根.考點(diǎn):本題考查的是根的判別式,一元二次方程的解的定義,解一元二次方程點(diǎn)評:解答本題的關(guān)鍵是熟練掌握一元二次方程根的情況與判別式△的關(guān)系:當(dāng)△>1,方程有兩個不相等的實(shí)數(shù)根;當(dāng)△=1,方程有兩個相等的實(shí)數(shù)根;當(dāng)△<1,方程沒有實(shí)數(shù)根19、(1)證明見解析;(2)2.【解析】

(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;(2)證明△ODF∽△AEF,列比例式可得結(jié)論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點(diǎn)睛】本題主要考查的是圓的綜合應(yīng)用,解答本題主要應(yīng)用了圓周角定理、相似三角形的性質(zhì)和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關(guān)鍵.20、(1)30°;(2)20°;【解析】

(1)利用圓切線的性質(zhì)求解;(2)連接OQ,利用圓的切線性質(zhì)及角之間的關(guān)系求解。【詳解】(1)如圖①中,連接OQ.∵EQ是切線,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如圖②中,連接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切線,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【點(diǎn)睛】此題主要考查圓的切線的性質(zhì)及圓中集合問題的綜合運(yùn)等.21、(1)35元/盒;(2)20%.【解析】

試題分析:(1)設(shè)2014年這種禮盒的進(jìn)價為x元/盒,則2016年這種禮盒的進(jìn)價為(x﹣11)元/盒,根據(jù)2014年花3500元與2016年花2400元購進(jìn)的禮盒數(shù)量相同,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;(2)設(shè)年增長率為m,根據(jù)數(shù)量=總價÷單價求出2014年的購進(jìn)數(shù)量,再根據(jù)2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關(guān)于m的一元二次方程,解之即可得出結(jié)論.試題解析:(1)設(shè)2014年這種禮盒的進(jìn)價為x元/盒,則2016年這種禮盒的進(jìn)價為(x﹣11)元/盒,根據(jù)題意得:,解得:x=35,經(jīng)檢驗(yàn),x=35是原方程的解.答:2014年這種禮盒的進(jìn)價是35元/盒.(2)設(shè)年增長率為m,2014年的銷售數(shù)量為3500÷35=100(盒).根據(jù)題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20%.考點(diǎn):一元二次方程的應(yīng)用;分式方程的應(yīng)用;增長率問題.22、(1)1500;(2)見解析;(3)108°;(3)12~23歲的人數(shù)為400萬【解析】試題分析:(1)根據(jù)30-35歲的人數(shù)和所占的百分比求調(diào)查的人數(shù);(2)從調(diào)查的總?cè)藬?shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據(jù)此補(bǔ)全條形統(tǒng)計(jì)圖;(3)先計(jì)算18-23歲的人數(shù)占調(diào)查總?cè)藬?shù)的百分比,再計(jì)算這一組所對應(yīng)的圓心角的度數(shù);(4)先計(jì)算調(diào)查中12﹣23歲的人數(shù)所占的百分比,再求網(wǎng)癮人數(shù)約為2000萬中的12﹣23歲的人數(shù).試題解析:解:(1)結(jié)合條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖可知,30-35歲的人數(shù)為330人,所占的百分比為22%,所以調(diào)查的總?cè)藬?shù)為330÷22%=1500人.故答案為1500;(2)1500-450-420-330=300人.補(bǔ)全的條形統(tǒng)計(jì)圖如圖:(3)18-23歲這一組所對應(yīng)的圓心角的度數(shù)為360×=108°.故答案為108°;(4)(300+450)÷1500=50%,.考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖.23、3+3【解析】

先化簡分式,再計(jì)算x的值,最后把x的值代入化簡后的分式,計(jì)算出結(jié)果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當(dāng)x=2cos30°+tan45°=2×32=3+1時.xx-1=【點(diǎn)睛】本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關(guān)鍵是掌握分式的運(yùn)算法則和運(yùn)算順序.24、詳見解析.【解析】試題分析:(1)根據(jù)定義分別求解即可求得答案;(1)①首先由函數(shù)y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數(shù)y=x1﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論