2024屆北京西城區(qū)北京八中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁
2024屆北京西城區(qū)北京八中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁
2024屆北京西城區(qū)北京八中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁
2024屆北京西城區(qū)北京八中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁
2024屆北京西城區(qū)北京八中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆北京西城區(qū)北京八中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.化簡(﹣a2)?a5所得的結(jié)果是()A.a(chǎn)7 B.﹣a7 C.a(chǎn)10 D.﹣a102.下列運(yùn)算正確的是()A.a(chǎn)2+a3=a5 B.(a3)2÷a6=1 C.a(chǎn)2?a3=a6 D.(2+3)2=53.2017上半年,四川貨物貿(mào)易進(jìn)出口總值為2098.7億元,較去年同期增長59.5%,遠(yuǎn)高于同期全國19.6%的整體進(jìn)出口增幅.在“一帶一路”倡議下,四川同期對以色列、埃及、羅馬尼亞、伊拉克進(jìn)出口均實現(xiàn)數(shù)倍增長.將2098.7億元用科學(xué)記數(shù)法表示是()A.2.0987×103 B.2.0987×1010 C.2.0987×1011 D.2.0987×10124.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.5.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個6.設(shè)α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-17.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是()A.27 B.51 C.69 D.728.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.9.如果將拋物線向下平移1個單位,那么所得新拋物線的表達(dá)式是A. B. C. D.10.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時,y隨x的增大而增大,且?2≤x≤1時,y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.若與是同類項,則的立方根是.12.已知正方形ABCD,AB=1,分別以點(diǎn)A、C為圓心畫圓,如果點(diǎn)B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.13.如圖,在平面直角坐標(biāo)系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點(diǎn)O為AB的中點(diǎn),固定點(diǎn)A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點(diǎn)D′處,點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為______.14.計算:(+)=_____.15.廢舊電池對環(huán)境的危害十分巨大,一粒紐扣電池能污染600立方米的水(相當(dāng)于一個人一生的飲水量).某班有50名學(xué)生,如果每名學(xué)生一年丟棄一粒紐扣電池,且都沒有被回收,那么被該班學(xué)生一年丟棄的紐扣電池能污染的水用科學(xué)記數(shù)法表示為_____立方米.16.如圖,無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無人機(jī)距地面高度CD為米,點(diǎn)A、D、B在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號)三、解答題(共8題,共72分)17.(8分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC以每秒1個單位長度的速度向中點(diǎn)C運(yùn)動,過點(diǎn)P作PQ⊥AB,交折線AD﹣DC于點(diǎn)Q,將線段PQ繞點(diǎn)P順時針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動的時間為t(秒).(1)當(dāng)點(diǎn)R與點(diǎn)B重合時,求t的值;(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動時,求線段PQ的長(用含有t的代數(shù)式表示);(3)當(dāng)點(diǎn)R落在?ABCD的外部時,求S與t的函數(shù)關(guān)系式;(4)直接寫出點(diǎn)P運(yùn)動過程中,△PCD是等腰三角形時所有的t值.18.(8分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點(diǎn),且向右平移1個單位長度后,剛好過點(diǎn)(3,1).①求此拋物線的解析式;②以y軸上的點(diǎn)P(1,n)為中心,作該拋物線關(guān)于點(diǎn)P對稱的拋物線y',若這兩條拋物線有公共點(diǎn),求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當(dāng)x=c時,y=1;當(dāng)1<x<c時,y>1.試比較ac與1的大小,并說明理由.19.(8分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點(diǎn),CM的延長線交⊙O于點(diǎn)E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.20.(8分)對于平面直角坐標(biāo)系xOy中的任意兩點(diǎn)M,N,給出如下定義:點(diǎn)M與點(diǎn)N的“折線距離”為:.例如:若點(diǎn)M(-1,1),點(diǎn)N(2,-2),則點(diǎn)M與點(diǎn)N的“折線距離”為:.根據(jù)以上定義,解決下列問題:已知點(diǎn)P(3,-2).①若點(diǎn)A(-2,-1),則d(P,A)=;②若點(diǎn)B(b,2),且d(P,B)=5,則b=;③已知點(diǎn)C(m,n)是直線上的一個動點(diǎn),且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標(biāo)為(0,t),若⊙F上存在點(diǎn)E,使d(E,O)=2,直接寫出t的取值范圍.21.(8分)博鰲亞洲論壇2018年年會于4月8日在海南博鰲拉開帷幕,組委會在會議中心的墻壁上懸掛會旗,已知矩形DCFE的兩邊DE,DC長分別為1.6m,1.2m.旗桿DB的長度為2m,DB與墻面AB的夾角∠DBG為35°.當(dāng)會旗展開時,如圖所示,(1)求DF的長;(2)求點(diǎn)E到墻壁AB所在直線的距離.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)22.(10分)為倡導(dǎo)“低碳生活”,人們常選擇以自行車作為代步工具、圖(1)所示的是一輛自行車的實物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔AC與CD的長分別為45cm和60cm,且它們互相垂直,座桿CE的長為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°.(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求車架檔AD的長;(2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1cm).23.(12分)如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為-10,OB=3OA,點(diǎn)M以每秒3個單位長度的速度從點(diǎn)A向右運(yùn)動.點(diǎn)N以每秒2個單位長度的速度從點(diǎn)O向右運(yùn)動(點(diǎn)M、點(diǎn)N同時出發(fā))數(shù)軸上點(diǎn)B對應(yīng)的數(shù)是______.經(jīng)過幾秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等?24.為提高市民的環(huán)保意識,倡導(dǎo)“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點(diǎn)投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點(diǎn)投放的A型車與B型車各多少輛?試點(diǎn)投放活動得到了廣大市民的認(rèn)可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點(diǎn)投放中A,B兩車型的數(shù)量比進(jìn)行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:根據(jù)同底數(shù)冪的乘法計算即可,計算時注意確定符號.詳解:(-a2)·a5=-a7.故選B.點(diǎn)睛:本題考查了同底數(shù)冪的乘法,熟練掌握同底數(shù)的冪相乘,底數(shù)不變,指數(shù)相加是解答本題的關(guān)鍵.2、B【解析】

利用合并同類項對A進(jìn)行判斷;根據(jù)冪的乘方和同底數(shù)冪的除法對B進(jìn)行判斷;根據(jù)同底數(shù)冪的乘法法則對C進(jìn)行判斷;利用完全平方公式對D進(jìn)行判斷.【詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【點(diǎn)睛】本題考查同底數(shù)冪的乘除、二次根式的混合運(yùn)算,:二次根式的混合運(yùn)算先把二次根式化為最簡二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.解題關(guān)鍵是在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.3、C【解析】將2098.7億元用科學(xué)記數(shù)法表示是2.0987×1011,故選:C.點(diǎn)睛:本題考查了正整數(shù)指數(shù)科學(xué)計數(shù)法,對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).4、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵M(jìn)N∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.5、B【解析】

根據(jù)軸對稱圖形和中心對稱圖形的定義對各個圖形進(jìn)行逐一分析即可.【詳解】解:第一個圖形是軸對稱圖形,但不是中心對稱圖形;第二個圖形是中心對稱圖形,但不是軸對稱圖形;第三個圖形既是軸對稱圖形,又是中心對稱圖形;第四個圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個,故選:B.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后兩部分重合.6、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點(diǎn):根與系數(shù)的關(guān)系.7、D【解析】設(shè)第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1.列出三個數(shù)的和的方程,再根據(jù)選項解出x,看是否存在.解:設(shè)第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1故三個數(shù)的和為x+x+7+x+1=3x+21當(dāng)x=16時,3x+21=69;當(dāng)x=10時,3x+21=51;當(dāng)x=2時,3x+21=2.故任意圈出一豎列上相鄰的三個數(shù)的和不可能是3.故選D.“點(diǎn)睛“此題主要考查了一元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.8、D【解析】

連接CD,再利用勾股定理分別計算出AD、AC、BD的長,然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點(diǎn)睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是證明∠ADC=90°.9、C【解析】

根據(jù)向下平移,縱坐標(biāo)相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.10、D【解析】

先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時,y的最大值為9,可得x=1時,y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-2a2a∵當(dāng)x≥2時,y隨x的增大而增大,∴a>0,∵-2≤x≤1時,y的最大值為9,∴x=1時,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-b2a,4ac-b24a),對稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當(dāng)a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時,y隨x的增大而減?。粁>-b2a時,y隨x的增大而增大;x=-b2a時,y取得最小值4ac-b24a二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解析】試題分析:若與是同類項,則:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案為2.考點(diǎn):2.立方根;2.合并同類項;3.解二元一次方程組;4.綜合題.12、﹣1<r<.【解析】

首先根據(jù)題意求得對角線AC的長,設(shè)圓A的半徑為R,根據(jù)點(diǎn)B在圓A外,得出0<R<1,則-1<-R<0,再根據(jù)圓A與圓C外切可得R+r=,利用不等式的性質(zhì)即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,

∴AC=,

設(shè)圓A的半徑為R,

∵點(diǎn)B在圓A外,

∴0<R<1,

∴-1<-R<0,

∴-1<-R<.

∵以A、C為圓心的兩圓外切,

∴兩圓的半徑的和為,

∴R+r=,r=-R,

∴-1<r<.

故答案為:-1<r<.【點(diǎn)睛】本題考查了圓與圓的位置關(guān)系,點(diǎn)與圓的位置關(guān)系,正方形的性質(zhì),勾股定理,不等式的性質(zhì).掌握位置關(guān)系與數(shù)量之間的關(guān)系是解題的關(guān)鍵.13、(2,1)【解析】

由已知條件得到AD′=AD=,AO=AB=1,根據(jù)勾股定理得到OD′==1,于是得到結(jié)論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,

∴C′(2,1),

故答案為:(2,1)【點(diǎn)睛】本題考查了矩形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.14、1.【解析】

去括號后得到答案.【詳解】原式=×+×=2+1=1,故答案為1.【點(diǎn)睛】本題主要考查了去括號的概念,解本題的要點(diǎn)在于二次根式的運(yùn)算.15、3×1【解析】因為一粒紐扣電池能污染600立方米的水,如果每名學(xué)生一年丟棄一粒紐扣電池,那么被該班學(xué)生一年丟棄的紐扣電池能污染的水就是:600×50=30000,用科學(xué)記數(shù)法表示為3×1立方米.

故答案為3×1.16、100(1+)【解析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計算AD+BD即可.詳解:如圖,∵無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點(diǎn)間的距離為100(1+)米.故答案為100(1+).點(diǎn)睛:本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題:解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.三、解答題(共8題,共72分)17、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】

(1)根據(jù)題意點(diǎn)R與點(diǎn)B重合時t+t=3,即可求出t的值;(2)根據(jù)題意運(yùn)用t表示出PQ即可;(3)當(dāng)點(diǎn)R落在□ABCD的外部時可得出t的取值范圍,再根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;(3)根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵將線段PQ繞點(diǎn)P順時針旋轉(zhuǎn)90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當(dāng)運(yùn)動時間為t秒時,AP=t,PQ=PQ=AP?tanA=t.∵點(diǎn)R與點(diǎn)B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當(dāng)點(diǎn)P在BC邊上時,3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當(dāng)<t≤3時,重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當(dāng)3<t≤3時,重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當(dāng)3<t<9時,重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當(dāng)DC=DP1=3時,易知AP1=3,t=3.②當(dāng)DC=DP2時,CP2=2?CD?,∴BP2=,∴t=3+.③當(dāng)CD=CP3時,t=4.④當(dāng)CP3=DP3時,CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點(diǎn)睛】本題考查四邊形綜合題、動點(diǎn)問題、平行四邊形的性質(zhì)、多邊形的面積、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.18、(1)①;②n≤1;(2)ac≤1,見解析.【解析】

(1)①△=1求解b=1,將點(diǎn)(3,1)代入平移后解析式,即可;②頂點(diǎn)為(1,)關(guān)于P(1,n)對稱點(diǎn)的坐標(biāo)是(﹣1,2n﹣),關(guān)于點(diǎn)P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n,聯(lián)立方程組即可求n的范圍;(2)將點(diǎn)(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,當(dāng)1<x<c時,y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【詳解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的拋物線y=a(x﹣1)2﹣b(x﹣1)過點(diǎn)(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原拋物線:y=﹣x2+x,②其頂點(diǎn)為(1,)關(guān)于P(1,n)對稱點(diǎn)的坐標(biāo)是(﹣1,2n﹣),∴關(guān)于點(diǎn)P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由題知:a>1,將此拋物線y=ax2﹣bx向上平移c個單位(c>1),其解析式為:y=ax2﹣bx+c過點(diǎn)(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且當(dāng)x=1時,y=c,對稱軸:x=,拋物線開口向上,畫草圖如右所示.由題知,當(dāng)1<x<c時,y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;【點(diǎn)睛】本題考查二次函數(shù)的圖象及性質(zhì);掌握二次函數(shù)圖象平移時改變位置,而a的值不變是解題的關(guān)鍵.19、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解析】

(1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;

(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度;

(3)過點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,通過作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M(jìn)為OB的中點(diǎn),∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點(diǎn)睛】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).20、(1)①6,②2或4,③1<m<4;(2)或.【解析】

(1)①根據(jù)“折線距離”的定義直接列式計算;②根據(jù)“折線距離”的定義列出方程,求解即可;③根據(jù)“折線距離”的定義列出式子,可知其幾何意義是數(shù)軸上表示數(shù)m的點(diǎn)到表示數(shù)3的點(diǎn)的距離與到表示數(shù)2的點(diǎn)的距離之和小于3.(2)由題意可知,根據(jù)圖像易得t的取值范圍.【詳解】解:(1)①②∴∴b=2或4③,即數(shù)軸上表示數(shù)m的點(diǎn)到表示數(shù)3的點(diǎn)的距離與到表示數(shù)2的點(diǎn)的距離之和小于3,所以1<m<4(2)設(shè)E(x,y),則,如圖,若點(diǎn)E在⊙F上,則.【點(diǎn)睛】本題主要考查坐標(biāo)與圖形,正確理解新定義及其幾何意義,利用數(shù)形結(jié)合的思想思考問題是解題關(guān)鍵.21、(1)1m.(1)1.5m.【解析】

(1)由題意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點(diǎn)M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【詳解】解:(1)在Rt△DEF中,由題意知ED=1.6m,BD=1m,DF==1.答:DF長為1m.(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點(diǎn)M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1?sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6?cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E點(diǎn)離墻面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論