版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
郴州市重點中學(xué)2024年中考數(shù)學(xué)考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.﹣2018的相反數(shù)是()A.﹣2018 B.2018 C.±2018 D.﹣2.已知二次函數(shù)圖象上部分點的坐標(biāo)對應(yīng)值列表如下:x…-3-2-1012…y…2-1-2-127…則該函數(shù)圖象的對稱軸是()A.x=-3 B.x=-2 C.x=-1 D.x=03.2019年4月份,某市市區(qū)一周空氣質(zhì)量報告中某項污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.32,31 B.31,32 C.31,31 D.32,354.在如圖的計算程序中,y與x之間的函數(shù)關(guān)系所對應(yīng)的圖象大致是()A. B. C. D.5.在一次體育測試中,10名女生完成仰臥起坐的個數(shù)如下:38,52,47,46,50,50,61,72,45,48,則這10名女生仰臥起坐個數(shù)不少于50個的頻率為()A.0.3 B.0.4 C.0.5 D.0.66.一組數(shù)據(jù)3、2、1、2、2的眾數(shù),中位數(shù),方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.27.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(
)A.9分B.8分C.7分D.6分8.2017上半年,四川貨物貿(mào)易進出口總值為2098.7億元,較去年同期增長59.5%,遠(yuǎn)高于同期全國19.6%的整體進出口增幅.在“一帶一路”倡議下,四川同期對以色列、埃及、羅馬尼亞、伊拉克進出口均實現(xiàn)數(shù)倍增長.將2098.7億元用科學(xué)記數(shù)法表示是()A.2.0987×103 B.2.0987×1010 C.2.0987×1011 D.2.0987×10129.如圖,甲、乙、丙圖形都是由大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個數(shù).其中主視圖相同的是()A.僅有甲和乙相同 B.僅有甲和丙相同C.僅有乙和丙相同 D.甲、乙、丙都相同10.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線經(jīng)過正方形的頂點分別過此正方形的頂點、作于點、于點.若,則的長為________.12.在四張背面完全相同的卡片上分別印有等腰三角形、平行四邊形、菱形和圓的圖案,現(xiàn)將印有圖案的一面朝下,混合后從中隨機抽取兩張,則抽到卡片上印有圖案都是軸對稱圖形的概率為_____.13.在一個不透明的布袋中裝有4個白球和n個黃球,它們除顏色不同外,其余均相同,若從中隨機摸出一個球,摸到白球的概率是,則n=_____.14.如圖,Rt△ABC中,∠ACB=90°,D為AB的中點,F(xiàn)為CD上一點,且CF=CD,過點B作BE∥DC交AF的延長線于點E,BE=12,則AB的長為_____.15.如圖,在△ABC中,∠ACB=90°,點D是CB邊上一點,過點D作DE⊥AB于點E,點F是AD的中點,連結(jié)EF、FC、CE.若AD=2,∠CFE=90°,則CE=_____.16.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.三、解答題(共8題,共72分)17.(8分)在數(shù)學(xué)課上,老師提出如下問題:小楠同學(xué)的作法如下:老師說:“小楠的作法正確.”請回答:小楠的作圖依據(jù)是______________________________________________.18.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當(dāng)四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當(dāng)四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,當(dāng)A、E、F三點共線時,請直接寫出點B到直線AE的距離.19.(8分)計算:2cos30°+--()-220.(8分)學(xué)了統(tǒng)計知識后,小紅就本班同學(xué)上學(xué)“喜歡的出行方式”進行了一次調(diào)查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應(yīng)的圓心角的度數(shù).(2)若由3名“喜歡乘車”的學(xué)生,1名“喜歡騎車”的學(xué)生組隊參加一項活動,現(xiàn)欲從中選出2人擔(dān)任組長(不分正副),求出2人都是“喜歡乘車”的學(xué)生的概率,(要求列表或畫樹狀圖)21.(8分)為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計表:“祖沖之獎”的學(xué)生成績統(tǒng)計表:分?jǐn)?shù)/分80859095人數(shù)/人42104根據(jù)圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數(shù)是_____,并將條形統(tǒng)計圖補充完整;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是_____分,眾數(shù)是_____分;(3)在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“﹣2”,“﹣1”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.22.(10分)全民健身運動已成為一種時尚,為了解揭陽市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷內(nèi)容包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散步;E:不運動.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分,運動形式ABCDE人數(shù)請你根據(jù)以上信息,回答下列問題:接受問卷調(diào)查的共有人,圖表中的,.統(tǒng)計圖中,類所對應(yīng)的扇形的圓心角的度數(shù)是度.揭陽市環(huán)島路是市民喜愛的運動場所之一,每天都有“暴走團”活動,若某社區(qū)約有人,請你估計一下該社區(qū)參加環(huán)島路“暴走團”的人數(shù).23.(12分)某校數(shù)學(xué)綜合實踐小組的同學(xué)以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計圖,如下圖所示:本次調(diào)查人數(shù)共人,使用過共享單車的有人;請將條形統(tǒng)計圖補充完整;如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?24.如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,已知△ABC三個定點坐標(biāo)分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).畫出△ABC關(guān)于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標(biāo):A1(,),B1(,),C1(,);畫出點C關(guān)于y軸的對稱點C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:只有符號不同的兩個數(shù)叫做互為相反數(shù).詳解:-1的相反數(shù)是1.故選:B.點睛:本題主要考查的是相反數(shù)的定義,掌握相反數(shù)的定義是解題的關(guān)鍵.2、C【解析】
由當(dāng)x=-2和x=0時,y的值相等,利用二次函數(shù)圖象的對稱性即可求出對稱軸.【詳解】解:∵x=-2和x=0時,y的值相等,∴二次函數(shù)的對稱軸為,故答案為:C.【點睛】本題考查了二次函數(shù)的性質(zhì),利用二次函數(shù)圖象的對稱性找出對稱軸是解題的關(guān)鍵.3、C【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.解答:解:從小到大排列此數(shù)據(jù)為:30、1、1、1、32、34、35,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.4、A【解析】函數(shù)→一次函數(shù)的圖像及性質(zhì)5、C【解析】
用仰臥起坐個數(shù)不少于10個的頻數(shù)除以女生總?cè)藬?shù)10計算即可得解.【詳解】仰臥起坐個數(shù)不少于10個的有12、10、10、61、72共1個,所以,頻率==0.1.故選C.【點睛】本題考查了頻數(shù)與頻率,頻率=.6、B【解析】試題解析:從小到大排列此數(shù)據(jù)為:1,2,2,2,3;數(shù)據(jù)2出現(xiàn)了三次最多為眾數(shù),2處在第3位為中位數(shù).平均數(shù)為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數(shù)是2,眾數(shù)是2,方差為0.1.故選B.7、C【解析】分析:根據(jù)中位數(shù)的定義,首先將這組數(shù)據(jù)按從小到大的順序排列起來,由于這組數(shù)據(jù)共有7個,故處于最中間位置的數(shù)就是第四個,從而得出答案.詳解:將這組數(shù)據(jù)按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為:C.點睛:本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義:將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).8、C【解析】將2098.7億元用科學(xué)記數(shù)法表示是2.0987×1011,故選:C.點睛:本題考查了正整數(shù)指數(shù)科學(xué)計數(shù)法,對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).9、B【解析】試題分析:根據(jù)分析可知,甲的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;乙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,1;丙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;則主視圖相同的是甲和丙.考點:由三視圖判斷幾何體;簡單組合體的三視圖.10、B【解析】
根據(jù)三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點睛】本題考查了三角形的中線,解題的關(guān)鍵是掌握三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.二、填空題(本大題共6個小題,每小題3分,共18分)11、13【解析】
根據(jù)正方形的性質(zhì)得出AD=AB,∠BAD=90°,根據(jù)垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根據(jù)AAS推出△AED≌△BFA,根據(jù)全等三角形的性質(zhì)得出AE=BF=5,AF=DE=8,即可求出答案;【詳解】∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代換);∵BF⊥a于點F,DE⊥a于點E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的對應(yīng)邊相等),∴EF=AF+AE=DE+BF=8+5=13.故答案為13.點睛:本題考查了勾股定理,全等三角形的性質(zhì)和判定,正方形的性質(zhì)的應(yīng)用,能求出△AED≌△BFA是解此題的關(guān)鍵.12、【解析】
用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽到卡片上印有圖案都是軸對稱圖形的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖:共有12種等可能的結(jié)果數(shù),其中抽到卡片上印有圖案都是軸對稱圖形的結(jié)果數(shù)為6,所以抽到卡片上印有圖案都是軸對稱圖形的概率.故答案為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.也考查了軸對稱圖形.13、1【解析】
根據(jù)白球的概率公式=列出方程求解即可.【詳解】不透明的布袋中的球除顏色不同外,其余均相同,共有n+4個球,其中白球4個,根據(jù)古典型概率公式知:P(白球)==.解得:n=1,故答案為1.【點睛】此題主要考查了概率公式的應(yīng)用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、1.【解析】
根據(jù)三角形的性質(zhì)求解即可?!驹斀狻拷猓涸赗t△ABC中,D為AB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得:AD=BD=CD,因為D為AB的中點,BE//DC,所以DF是△ABE的中位線,BE=2DF=12所以DF==6,設(shè)CD=x,由CF=CD,則DF==6,可得CD=9,故AD=BD=CD=9,故AB=1,故答案:1..【點睛】本題主要考查三角形基本概念,綜合運用三角形的知識可得答案。15、【解析】
根據(jù)直角三角形的中點性質(zhì)結(jié)合勾股定理解答即可.【詳解】解:,點F是AD的中點,.故答案為:.【點睛】此題重點考查學(xué)生對勾股定理的理解。熟練掌握勾股定理是解題的關(guān)鍵.16、【解析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關(guān)于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關(guān)于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設(shè)AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點睛】本題考查軸對稱-最短問題,菱形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,學(xué)會利用軸對稱解決最短問題.三、解答題(共8題,共72分)17、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.【解析】
根據(jù)對角線互相平分的四邊形是平行四邊形可判斷四邊形ABCP為平行四邊形,再根據(jù)平行四邊形的性質(zhì):對角線互相平分即可得到BD=CD,由此可得到小楠的作圖依據(jù).【詳解】解:由作圖的步驟可知平行四邊形可判斷四邊形ABCP為平行四邊形,再根據(jù)平行四邊形的性質(zhì):對角線互相平分即可得到BD=CD,所以小楠的作圖依據(jù)是:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.【點睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定和性質(zhì).18、(1),45°;(2)不成立,理由見解析;(3).【解析】
(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當(dāng)A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當(dāng)A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當(dāng)A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點共線問題是解題的關(guān)鍵.本題屬于中等偏難.19、5【解析】
根據(jù)實數(shù)的計算,先把各數(shù)化簡,再進行合并即可.【詳解】原式==5【點睛】此題主要考查實數(shù)的計算,解題的關(guān)鍵是熟知特殊三角函數(shù)的化簡與二次根式的運算.20、(1)補全條形統(tǒng)計圖見解析;“騎車”部分所對應(yīng)的圓心角的度數(shù)為108°;(2)2人都是“喜歡乘車”的學(xué)生的概率為.【解析】
(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學(xué)生50人;總?cè)藬?shù)減乘車的和騎車的人數(shù)就是步行的人數(shù),根據(jù)數(shù)據(jù)補全直方圖即可;要求扇形的度數(shù)就要先求出騎車的占的百分比,然后再求度數(shù);(2)列出從這4人中選兩人的所有等可能結(jié)果數(shù),2人都是“喜歡乘車”的學(xué)生的情況有3種,然后根據(jù)概率公式即可求得.【詳解】(1)被調(diào)查的總?cè)藬?shù)為25÷50%=50人;則步行的人數(shù)為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對應(yīng)的圓心角的度數(shù)=×360°=108°;(2)設(shè)3名“喜歡乘車”的學(xué)生表示為A、B、C,1名“喜歡騎車”的學(xué)生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學(xué)生有3種結(jié)果,所以2人都是“喜歡乘車”的學(xué)生的概率為.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、(1)劉徽獎的人數(shù)為人,補全統(tǒng)計圖見解析;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是90分,眾數(shù)是90分;(3)(點在第二象限).【解析】
(1)先根據(jù)祖沖之獎的人數(shù)及其百分比求得總?cè)藬?shù),再根據(jù)扇形圖求出趙爽獎、楊輝獎的人數(shù),繼而根據(jù)各獎項的人數(shù)之和等于總?cè)藬?shù)求得劉徽獎的人數(shù),據(jù)此可得;(2)根據(jù)中位數(shù)和眾數(shù)的定義求解可得;(3)列表得出所有等可能結(jié)果,再找到這個點在第二象限的結(jié)果,根據(jù)概率公式求解可得.【詳解】(1)∵獲獎的學(xué)生人數(shù)為20÷10%=200人,∴趙爽獎的人數(shù)為200×24%=48人,楊輝獎的人數(shù)為200×46%=92人,則劉徽獎的人數(shù)為200﹣(20+48+92)=40,補全統(tǒng)計圖如下:故答案為40;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是90分,眾數(shù)是90分.故答案為90、90;(3)列表法:∵第二象限的點有(﹣2,2)和(﹣1,2),∴P(點在第二象限).【點睛】本題考查了用列表法或畫樹狀圖法求概率、頻數(shù)分布直方圖以及利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 造紙廠投資合作協(xié)議書范文范本
- 兄妹4人繼承房產(chǎn)協(xié)議書范文
- 夏令營對接協(xié)議書范文模板
- 高三物理法拉第電磁感應(yīng)定律
- AI賦能藥物研發(fā)新紀(jì)元-挖掘潛力加速創(chuàng)新
- 跨年晚會主持稿
- 銷售員實習(xí)工作總結(jié)(34篇)
- 工程款抵押合同(35篇)
- 開學(xué)典禮新學(xué)期演講稿(3篇)
- 收銀員心得體會
- GB/T 44692.2-2024危險化學(xué)品企業(yè)設(shè)備完整性第2部分:技術(shù)實施指南
- 2024年煤礦安全管理人員(機電運輸)考試題庫(濃縮500題)
- 網(wǎng)絡(luò)協(xié)議分層設(shè)- 快遞環(huán)節(jié)我能懂 課件 2024-2025學(xué)年人教版(2024)初中信息科技七年級全一冊
- 2024年稅務(wù)考試-稅務(wù)稽查員考試近5年真題附答案
- 供應(yīng)鏈安全培訓(xùn)教材課件
- 地 理知識點-2024-2025學(xué)年七年級地理上學(xué)期(人教版2024)
- 人教版2024新版七年級上冊數(shù)學(xué)第三章 代數(shù)式學(xué)業(yè)質(zhì)量測試卷(含答案)
- 小學(xué)德育實施方案
- 2024秋期國家開放大學(xué)《可編程控制器應(yīng)用實訓(xùn)》一平臺在線形考(形成任務(wù)3)試題及答案
- 人教PEP版三年級英語上冊單元詞匯課件 Unit 3
- 蘇科版2024-2025學(xué)年九年級數(shù)學(xué)上冊 圓的對稱性(專項練習(xí))(培優(yōu)練)
評論
0/150
提交評論