湖南省長(zhǎng)沙市麓山國(guó)際實(shí)驗(yàn)校2024屆中考猜題數(shù)學(xué)試卷含解析_第1頁(yè)
湖南省長(zhǎng)沙市麓山國(guó)際實(shí)驗(yàn)校2024屆中考猜題數(shù)學(xué)試卷含解析_第2頁(yè)
湖南省長(zhǎng)沙市麓山國(guó)際實(shí)驗(yàn)校2024屆中考猜題數(shù)學(xué)試卷含解析_第3頁(yè)
湖南省長(zhǎng)沙市麓山國(guó)際實(shí)驗(yàn)校2024屆中考猜題數(shù)學(xué)試卷含解析_第4頁(yè)
湖南省長(zhǎng)沙市麓山國(guó)際實(shí)驗(yàn)校2024屆中考猜題數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省長(zhǎng)沙市麓山國(guó)際實(shí)驗(yàn)校2024屆中考猜題數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列四個(gè)實(shí)數(shù)中是無(wú)理數(shù)的是()A.2.5B.1032.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t53.隨著服裝市場(chǎng)競(jìng)爭(zhēng)日益激烈,某品牌服裝專賣店一款服裝按原售價(jià)降價(jià)20%,現(xiàn)售價(jià)為a元,則原售價(jià)為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.454.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.a(chǎn)﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+45.完全相同的6個(gè)小矩形如圖所示放置,形成了一個(gè)長(zhǎng)、寬分別為n、m的大矩形,則圖中陰影部分的周長(zhǎng)是()A.6(m﹣n) B.3(m+n) C.4n D.4m6.如圖,點(diǎn)A,B在雙曲線y=(x>0)上,點(diǎn)C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.37.如圖,等邊△ABC的邊長(zhǎng)為4,點(diǎn)D,E分別是BC,AC的中點(diǎn),動(dòng)點(diǎn)M從點(diǎn)A向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N沿B﹣D﹣E勻速運(yùn)動(dòng),點(diǎn)M,N同時(shí)出發(fā)且運(yùn)動(dòng)速度相同,點(diǎn)M到點(diǎn)B時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.8.點(diǎn)P(﹣2,5)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)9.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個(gè)交點(diǎn),則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣210.-的立方根是()A.-8 B.-4 C.-2 D.不存在二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為_____.12.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個(gè)單位,再向上平移3個(gè)單位得到的拋物線的頂點(diǎn)坐標(biāo)是_____.13.對(duì)于一元二次方程,根的判別式中的表示的數(shù)是__________.14.計(jì)算:|-3|-1=__.15.如圖,已知圓柱底面的周長(zhǎng)為,圓柱高為,在圓柱的側(cè)面上,過點(diǎn)和點(diǎn)嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為______.16.一個(gè)圓的半徑為2,弦長(zhǎng)是2,求這條弦所對(duì)的圓周角是_____.三、解答題(共8題,共72分)17.(8分)先化簡(jiǎn)代數(shù)式,再?gòu)末?,0,3中選擇一個(gè)合適的a的值代入求值.18.(8分)為迎接“全民閱讀日“系列活動(dòng),某校圍繞學(xué)生日人均閱讀時(shí)間這一問題,對(duì)八年級(jí)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:(1)本次共抽查了八年級(jí)學(xué)生多少人;(2)請(qǐng)直接將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)在扇形統(tǒng)計(jì)圖中,1?1.5小時(shí)對(duì)應(yīng)的圓心角是多少度;(4)根據(jù)本次抽樣調(diào)查,估計(jì)全市50000名八年級(jí)學(xué)生日人均閱讀時(shí)間狀況,其中在0.5?1.5小時(shí)的有多少人?19.(8分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).20.(8分)如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)在軸的正半軸上,且.(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),以每秒個(gè)單位的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),過點(diǎn)的直線與軸平行,直線交邊或邊于點(diǎn),交邊或邊于點(diǎn),設(shè)點(diǎn).運(yùn)動(dòng)時(shí)間為,線段的長(zhǎng)度為,已知時(shí),直線恰好過點(diǎn).①當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;②點(diǎn)出發(fā)時(shí)點(diǎn)也從點(diǎn)出發(fā),以每秒個(gè)單位的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)停止時(shí)點(diǎn)也停止.設(shè)的面積為,求與的函數(shù)關(guān)系式;③直接寫出②中的最大值是.21.(8分)圖1所示的遮陽(yáng)傘,傘柄垂直于水平地面,其示意圖如圖2、當(dāng)傘收緊時(shí),點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時(shí),動(dòng)點(diǎn)P由A向B移動(dòng);當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設(shè)AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設(shè)陽(yáng)光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).22.(10分)我國(guó)滬深股市交易中,如果買、賣一次股票均需付交易金額的作費(fèi)用.張先生以每股5元的價(jià)格買入“西昌電力”股票1000股,若他期望獲利不低于1000元,問他至少要等到該股票漲到每股多少元時(shí)才能賣出?(精確到0.01元)23.(12分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.24.綜合與探究:如圖1,拋物線y=﹣x2+x+與x軸分別交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn).經(jīng)過點(diǎn)A的直線l與y軸交于點(diǎn)D(0,﹣).(1)求A、B兩點(diǎn)的坐標(biāo)及直線l的表達(dá)式;(2)如圖2,直線l從圖中的位置出發(fā),以每秒1個(gè)單位的速度沿x軸的正方向運(yùn)動(dòng),運(yùn)動(dòng)中直線l與x軸交于點(diǎn)E,與y軸交于點(diǎn)F,點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)為A′,連接FA′、BA′,設(shè)直線l的運(yùn)動(dòng)時(shí)間為t(t>0)秒.探究下列問題:①請(qǐng)直接寫出A′的坐標(biāo)(用含字母t的式子表示);②當(dāng)點(diǎn)A′落在拋物線上時(shí),求直線l的運(yùn)動(dòng)時(shí)間t的值,判斷此時(shí)四邊形A′BEF的形狀,并說明理由;(3)在(2)的條件下,探究:在直線l的運(yùn)動(dòng)過程中,坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使得以P,A′,B,E為頂點(diǎn)的四邊形為矩形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】本題主要考查了無(wú)理數(shù)的定義.根據(jù)無(wú)理數(shù)的定義:無(wú)限不循環(huán)小數(shù)是無(wú)理數(shù)即可求解.解:A、2.5是有理數(shù),故選項(xiàng)錯(cuò)誤;B、103C、π是無(wú)理數(shù),故選項(xiàng)正確;D、1.414是有理數(shù),故選項(xiàng)錯(cuò)誤.故選C.2、D【解析】選項(xiàng)A,根據(jù)同底數(shù)冪的乘法可得原式=t10;選項(xiàng)B,不是同類項(xiàng),不能合并;選項(xiàng)C,根據(jù)同底數(shù)冪的乘法可得原式=t7;選項(xiàng)D,根據(jù)同底數(shù)冪的乘法可得原式=t5,四個(gè)選項(xiàng)中只有選項(xiàng)D正確,故選D.3、C【解析】

根據(jù)題意列出代數(shù)式,化簡(jiǎn)即可得到結(jié)果.【詳解】根據(jù)題意得:a÷(1?20%)=a÷45=5故答案選:C.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是列代數(shù)式,解題的關(guān)鍵是熟練的掌握列代數(shù)式.4、C【解析】

直接利用同底數(shù)冪的乘除運(yùn)算法則、負(fù)指數(shù)冪的性質(zhì)、二次根式的加減運(yùn)算法則、平方差公式分別計(jì)算即可得出答案.【詳解】A、a3?a2=a5,故A選項(xiàng)錯(cuò)誤;B、a﹣2=,故B選項(xiàng)錯(cuò)誤;C、3﹣2=,故C選項(xiàng)正確;D、(a+2)(a﹣2)=a2﹣4,故D選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了同底數(shù)冪的乘除運(yùn)算以及負(fù)指數(shù)冪的性質(zhì)以及二次根式的加減運(yùn)算、平方差公式,正確掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.5、D【解析】

解:設(shè)小長(zhǎng)方形的寬為a,長(zhǎng)為b,則有b=n-3a,陰影部分的周長(zhǎng):2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.6、B【解析】【分析】依據(jù)點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進(jìn)而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進(jìn)而得到Rt△ABC中,AB=2.【詳解】點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,設(shè)C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負(fù)值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點(diǎn)睛】本題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,注意反比例函數(shù)圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.7、A【解析】

根據(jù)題意,將運(yùn)動(dòng)過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點(diǎn)D到AB距離為,當(dāng)0≤x≤2時(shí),y=;當(dāng)2≤x≤4時(shí),y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點(diǎn)睛】本題為動(dòng)點(diǎn)問題的函數(shù)圖象,解答關(guān)鍵是找到動(dòng)點(diǎn)到達(dá)臨界點(diǎn)前后的一般圖形,分類討論,求出函數(shù)關(guān)系式.8、D【解析】

根據(jù)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得答案.【詳解】點(diǎn)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為,故選:D.【點(diǎn)睛】本題主要考查了平面直角坐標(biāo)系中點(diǎn)的對(duì)稱,熟練掌握點(diǎn)的對(duì)稱特點(diǎn)是解決本題的關(guān)鍵.9、C【解析】

根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個(gè)交點(diǎn),利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個(gè)交點(diǎn),∴當(dāng)m=0時(shí),y=2x+1,此時(shí)y=0時(shí),x=﹣0.5,該函數(shù)與x軸有一個(gè)交點(diǎn),當(dāng)m≠0時(shí),函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個(gè)交點(diǎn),則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點(diǎn)睛】本題考查拋物線與x軸的交點(diǎn),解答本題的關(guān)鍵是明確題意,利用分類討論的數(shù)學(xué)思想解答.10、C【解析】分析:首先求出的值,然后根據(jù)立方根的計(jì)算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點(diǎn)睛:本題主要考查的是算術(shù)平方根與立方根,屬于基礎(chǔ)題型.理解算術(shù)平方根與立方根的含義是解決本題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1:1【解析】

根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點(diǎn),∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.12、(﹣7,0)【解析】

直接利用平移規(guī)律“左加右減,上加下減”得出平移后的解析式進(jìn)而得出答案.【詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個(gè)單位,再向上平移3個(gè)單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點(diǎn)坐標(biāo)是:(-7,0).故答案為(-7,0).【點(diǎn)睛】此題主要考查了二次函數(shù)與幾何變換,正確掌握平移規(guī)律是解題關(guān)鍵.13、-5【解析】

分清一元二次方程中,二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng),直接解答即可.【詳解】解:表示一元二次方程的一次項(xiàng)系數(shù).【點(diǎn)睛】此題考查根的判別式,在解一元二次方程時(shí)程根的判別式△=b2-4ac,不要盲目套用,要看具體方程中的a,b,c的值.a(chǎn)代表二次項(xiàng)系數(shù),b代表一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).14、2【解析】

根據(jù)有理數(shù)的加減混合運(yùn)算法則計(jì)算.【詳解】解:|﹣3|﹣1=3-1=2.故答案為2.【點(diǎn)睛】考查的是有理數(shù)的加減運(yùn)算、乘除運(yùn)算,掌握它們的運(yùn)算法則是解題的關(guān)鍵.15、【解析】

要求絲線的長(zhǎng),需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),根據(jù)勾股定理計(jì)算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長(zhǎng)最小為2AC的長(zhǎng)度.

∵圓柱底面的周長(zhǎng)為4dm,圓柱高為2dm,

∴AB=2dm,BC=BC′=2dm,

∴AC2=22+22=8,

∴AC=2dm.

∴這圈金屬絲的周長(zhǎng)最小為2AC=4dm.

故答案為:4dm【點(diǎn)睛】本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.16、60°或120°【解析】

首先根據(jù)題意畫出圖形,過點(diǎn)O作OD⊥AB于點(diǎn)D,通過垂徑定理,即可推出∠AOD的度數(shù),求得∠AOB的度數(shù),然后根據(jù)圓周角定理,即可推出∠AMB和∠ANB的度數(shù).【詳解】解:如圖:連接OA,過點(diǎn)O作OD⊥AB于點(diǎn)D,OA=2,AB=,AD=BD=,AD:OA=:2,∠AOD=,∠AOB=,∠AMB=,∠ANB=.故答案為:或.【點(diǎn)睛】本題主要考查垂徑定理與圓周角定理,注意弦所對(duì)的圓周角有兩個(gè),他們互為補(bǔ)角.三、解答題(共8題,共72分)17、,1【解析】

先通分得到,再根據(jù)平方差公式和完全平方公式得到,化簡(jiǎn)后代入a=3,計(jì)算即可得到答案.【詳解】原式===,當(dāng)a=3時(shí)(a≠﹣1,0),原式=1.【點(diǎn)睛】本題考查代數(shù)式的化簡(jiǎn)、平方差公式和完全平方公式,解題的關(guān)鍵是掌握代數(shù)式的化簡(jiǎn)、平方差公式和完全平方公式.18、(1)本次共抽查了八年級(jí)學(xué)生是150人;(2)條形統(tǒng)計(jì)圖補(bǔ)充見解析;(3)108;(4)估計(jì)該市12000名七年級(jí)學(xué)生中日人均閱讀時(shí)間在0.5~1.5小時(shí)的40000人.【解析】

(1)根據(jù)第一組的人數(shù)是30,占20%,即可求得總數(shù),即樣本容量;(2)利用總數(shù)減去另外兩段的人數(shù),即可求得0.5~1小時(shí)的人數(shù),從而作出直方圖;(3)利用360°乘以日人均閱讀時(shí)間在1~1.5小時(shí)的所占的比例;(4)利用總?cè)藬?shù)12000乘以對(duì)應(yīng)的比例即可.【詳解】(1)本次共抽查了八年級(jí)學(xué)生是:30÷20%=150人;故答案為150;(2)日人均閱讀時(shí)間在0.5~1小時(shí)的人數(shù)是:150﹣30﹣45=1.(3)人均閱讀時(shí)間在1~1.5小時(shí)對(duì)應(yīng)的圓心角度數(shù)是:故答案為108;(4)(人),答:估計(jì)該市12000名七年級(jí)學(xué)生中日人均閱讀時(shí)間在0.5~1.5小時(shí)的40000人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?9、(1)y=﹣2x+1;(2)點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【解析】

(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點(diǎn)A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點(diǎn)B(n,﹣1)在雙曲線y=﹣上,∴點(diǎn)B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過點(diǎn)A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時(shí),x=,∴點(diǎn)C(,0).設(shè)點(diǎn)P的坐標(biāo)為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法求出函數(shù)的解析式;(2)根據(jù)三角形的面積公式以及S△ABP=3,得出.20、(1);(2)①;②當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;③.【解析】

(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問題;(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標(biāo),利用兩點(diǎn)間距離公式即可解決問題;②分三種情形分別求解即可解決問題;③利用②中的函數(shù),利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線直的解析式為,直線的解析式時(shí),直線恰好過點(diǎn).,直線的解析式為,直線的解析式為①當(dāng)時(shí),,②當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),③當(dāng)時(shí),,時(shí),的最大值為.當(dāng)時(shí),.時(shí),的值最大,最大值為.當(dāng)時(shí),,時(shí),的最大值為,綜上所述,最大值為故答案為.【點(diǎn)睛】本題考查四邊形綜合題、一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建一次函數(shù)或二次函數(shù)解決實(shí)際問題,屬于中考?jí)狠S題.21、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.【解析】

(1)根據(jù)題意,得AC=CN+PN,進(jìn)一步求得AB的長(zhǎng),即可求得x的取值范圍;(1)根據(jù)等邊三角形的判定和性質(zhì)即可求解;(3)連接MN、EF,分別交AC于B、H.此題根據(jù)菱形CMPN的性質(zhì)求得MB的長(zhǎng),再根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,求得圓的半徑即可.【詳解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范圍是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等邊三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即當(dāng)∠CPN=60°時(shí),x=6;(3)連接MN、EF,分別交AC于B、H,∵PM=PN=CM=CN,∴四邊形PNCM是菱形,∴MN與PC互相垂直平分,AC是∠ECF的平分線,PB==6-,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.∵CE=CF,AC是∠ECF的平分線,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴=,∴,∴EH1=9?MB1=9?(6x﹣x1),∴y=π?EH1=9π(6x﹣x1),即y=﹣πx1+54πx.【點(diǎn)睛】此題主要考查了相似三角形的應(yīng)用以及菱形的性質(zhì)和二次函數(shù)的應(yīng)用,難點(diǎn)是第(3)問,熟練運(yùn)用菱形的性質(zhì)、相似三角形的性質(zhì)和二次函數(shù)的實(shí)際應(yīng)用.22、至少漲到每股6.1元時(shí)才能賣出.【解析】

根據(jù)關(guān)系式:總售價(jià)-兩次交易費(fèi)≥總成本+1000列出不等式求解即可.【詳解】解:設(shè)漲到每股x元時(shí)賣出,根據(jù)題意得1000x-(5000+1000x)×0.5%≥5000+1000,解這個(gè)不等式得x≥,即x≥6.1.答:至少漲到每股6.1元時(shí)才能賣出.【點(diǎn)睛】本題考查的是一元一次不等式在生活中的實(shí)際運(yùn)用,解決本題的關(guān)鍵是讀懂題意根據(jù)“總售價(jià)-兩次交易費(fèi)≥總成本+1000”列出不等關(guān)系式.23、證明見解析【解析】試題分析:由AB=AD,CB=CD結(jié)合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結(jié)合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC結(jié)合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結(jié)合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.試題解析:(1)在△ABC和△ADC中,

∵AB=AD,CB=CD,AC=AC,

∴△ABC≌△ADC,

∴∠BAC=∠DAC,

在△ABF和△ADF中,

∵AB=AD,∠BAC=∠DAC,AF=AF,

∴△ABF≌△ADF,

∴∠AFB=∠AFD.

(2)證明:∵AB∥CD,

∴∠BAC=∠ACD,

∵∠BAC=∠DAC,

∴∠ACD=∠CAD,

∴AD=CD,

∵AB=AD,CB=CD,

∴AB=CB=CD=AD,

∴四邊形ABCD是菱形.24、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF為菱形,見解析;(3)存在,P點(diǎn)坐標(biāo)為(,)或(,﹣).【解析】

(1)通過解方程﹣x2+x+=0得A(?1,0),B(3,0),然后利用待定系數(shù)法確定直線l的解析式;(2)①作A′H⊥x軸于H,如圖2,利用OA=1,OD=得到∠OAD=60°,再利用平移和對(duì)稱的性質(zhì)得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根據(jù)含30度的直角三角形三邊的關(guān)系表示出A′H,EH即可得到A′的坐標(biāo);②把A′(t?1,t)代入y=?x2+x+得?(t?1)2+(t?1)+=t,解方程得到t=2,此時(shí)A′點(diǎn)的坐標(biāo)為(2,),E(1,0),然后通過計(jì)算得到AF=BE=2,A′F∥BE,從而判斷四邊形A′BEF為平行四邊形,然后加上EF=BE可判定四邊形A′BEF為菱形;(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論