河北省保定市阜平縣城南莊中學(xué)等兩校2022-2023學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷_第1頁(yè)
河北省保定市阜平縣城南莊中學(xué)等兩校2022-2023學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷_第2頁(yè)
河北省保定市阜平縣城南莊中學(xué)等兩校2022-2023學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷_第3頁(yè)
河北省保定市阜平縣城南莊中學(xué)等兩校2022-2023學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷_第4頁(yè)
河北省保定市阜平縣城南莊中學(xué)等兩校2022-2023學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河北省保定市阜平縣城南莊中學(xué)等兩校八年級(jí)(上)期末數(shù)學(xué)試卷1.下列光線所形成的投影不是中心投影的是(

)A.太陽(yáng)光線 B.臺(tái)燈的光線 C.手電筒的光線 D.路燈的光線2.小華以每分鐘x個(gè)字的速度書(shū)寫(xiě),y分鐘寫(xiě)了300個(gè)字,則y與x之間的函數(shù)關(guān)系式為(

)A.y=x300 B.y=300x3.已知點(diǎn)P是線段AB的黃金分割點(diǎn),且AP>PBA.AB2=AP?PB 4.計(jì)算:sin60°?A.1 B.12 C.325.若ca+b=abA.12 B.1 C.?1 6.如圖,在Rt△ABC中,∠C=90°

A.sinA=23 B.cosA=7.△ABC與△DEF的相似比為1:4,則△A.1:2 B.1:3 C.4:1 D.1:168.在△ABC中,∠C=90°,BCA.5 B.3 C.43 9.下面四個(gè)幾何體:

其中,俯視圖是四邊形的幾何體個(gè)數(shù)是(

)A.1 B.2 C.3 D.410.如圖,點(diǎn)P是反比例函數(shù)y=kx(k≠0)的圖象上任意一點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為M.若A.?4 B.4 C.?2 11.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積(表面面積,也叫全面積)為(

)A.20π

B.24π

C.28π

12.如圖,由四個(gè)全等的直角三角形圍成的大正方形的面積是169,小正方形的面積為49,則sinα?cosα=(

)A.513 B.?513 C.713.如圖,禁止捕魚(yú)期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12nmile的B處有一艘捕魚(yú)船,正在沿南偏東75°方向以10nmile/hA.1h B.2h C.3h D.4h14.如圖,若△ABC與△A1BA.(1,0) B.(0,15.如圖,點(diǎn)A在函數(shù)y=2x(x>0)的圖象上,點(diǎn)B在函數(shù)y=4x(xA.1

B.2

C.3

D.416.“今有井徑五尺,不知其深,立五尺木于井上,從木末望水岸,入徑四寸,問(wèn)井深幾何?”這是我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中的“井深幾何”問(wèn)題,它的題意可以由圖獲得,則井深為(

)A.1.25尺

B.57.5尺

C.6.25尺

D.56.5尺

17.當(dāng)某一幾何體在投影面P前的擺放位置確定以后,改變它與投影面P的距離,其正投影的大小______,底面與投影面平行的圓錐體的正投影是______.18.如圖,在△ABC中,AB=AC=10,BC=16,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),∠ADE=∠B=

19.如圖是由六個(gè)全等的菱形組成的網(wǎng)格圖,菱形的頂點(diǎn)稱為格點(diǎn),A、O、B、C均在格點(diǎn)上,當(dāng)菱形的邊長(zhǎng)為1且∠AOB=60°時(shí),則有AB20.如圖,已知直線l1、l2、l3分別截直線l4于點(diǎn)A、B、C,截直線l5于點(diǎn)D、E、F,且l1//l2//l3.

(1)如果AB=4,BC=821.△ABC中,(3?tanA?3)2+|2cos22.一天晚上,李明和張龍利用燈光下的影子長(zhǎng)來(lái)測(cè)量一路燈D的高度.如圖,當(dāng)李明走到點(diǎn)A處時(shí),張龍測(cè)得李明直立時(shí)身高AM與影子長(zhǎng)AE正好相等;接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處時(shí),李明直立時(shí)身高BN的影子恰好是線段AB,并測(cè)得AB=1.25m,已知李明直立時(shí)的身高為1.75m,求路燈的高CD的長(zhǎng).(結(jié)果精確到23.自開(kāi)展“全民健身運(yùn)動(dòng)”以來(lái),喜歡戶外步行健身的人越來(lái)越多,為方便群眾步行健身,某地政府決定對(duì)一段如圖1所示的坡路進(jìn)行改造.如圖2所示,改造前的斜坡AB=200m,坡度為1:3.將斜坡AB的高度AE降低AC=20m后,斜坡改造為斜坡CD,其坡度為1:4,求斜坡24.已知函數(shù)y=?x+4的圖象與函數(shù)y=kx的圖象在同一平面直角坐標(biāo)系內(nèi),函數(shù)y=?x+4的圖象與坐標(biāo)軸交于A,B兩點(diǎn),點(diǎn)M(2,m)是直線AB上一點(diǎn),點(diǎn)N與點(diǎn)M關(guān)于y軸對(duì)稱,線段MN交y軸于點(diǎn)C.

(125.九年級(jí)(1)班課外活動(dòng)小組利用標(biāo)桿測(cè)量學(xué)校旗桿的高度,已知標(biāo)桿高度CD=3m,標(biāo)桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度26.某企業(yè)生產(chǎn)一種必需商品,經(jīng)過(guò)長(zhǎng)期市場(chǎng)調(diào)查后發(fā)現(xiàn):商品的月總產(chǎn)量穩(wěn)定在600件.商品的月銷量Q(件)由基本銷售量與浮動(dòng)銷售量?jī)蓚€(gè)部分組成,其中基本銷售量保持不變,浮動(dòng)銷售量與售價(jià)x(元/件)售價(jià)x(元/件58商品的銷售量Q(件580400(1)求Q與x的函數(shù)關(guān)系式.

(2)若生產(chǎn)出的商品正好銷完,求售價(jià)x.

(答案和解析1.【答案】A

【解析】解:中心投影的光源為燈光,平行投影的光源為陽(yáng)光與月光,在各選項(xiàng)中只有A選項(xiàng)得到的投影為平行投影.

故選:A.

利用中心投影和平行投影的定義判斷即可.

本題考查了中心投影的定義,解題的關(guān)鍵是理解中心投影的形成光源是燈光.判斷投影是中心投影的方法是看光線是否相交于一點(diǎn),如果光線是相交于一點(diǎn),那么所得到的投影就是中心投影.2.【答案】B

【解析】解:由題意得:xy=300,

∴y=300x,

故選:B.

此題可根據(jù)等量關(guān)系“300=速度×?xí)r間”,把相關(guān)數(shù)值代入即可求解.

3.【答案】B

【解析】解:∵P為線段AB的黃金分割點(diǎn),且AP>BP,

∴AP2=BP?A4.【答案】B

【解析】解:sin60°?tan30°=5.【答案】D

【解析】解:當(dāng)a+b+c=0時(shí),a=?(b+c),因而k=ab+c=?(b+c)b+c=6.【答案】A

【解析】解:在Rt△ABC中,∠C=90°,AB=3,BC=2,

∴AC=AB27.【答案】C

【解析】解:∵△ABC與△DEF的相似比為1:4

∴ABDE=14,

∴DEA8.【答案】A

【解析】解:∵sinA=BCAB=23,BC=2,

∴AB=9.【答案】B

【解析】解:俯視圖是四邊形的幾何體有正方體和三棱柱,

故選:B.

根據(jù)俯視圖是分別從物體上面看,所得到的圖形進(jìn)行解答即可.

本題考查了幾何體的三視圖,掌握定義是關(guān)鍵.注意所有的看到的棱都應(yīng)表現(xiàn)在三視圖中.10.【答案】A

【解析】【分析】

本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=kx(k≠0)圖象中任取一點(diǎn),過(guò)這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形面積是定值|k|,也考查了反比例函數(shù)的性質(zhì),

利用反比例函數(shù)k的幾何意義得到12|k|=2,然后根據(jù)反比例函數(shù)的性質(zhì)和絕對(duì)值的意義確定k的值.

【解答】

11.【答案】C

【解析】解:由題意可知,該幾何體是由圓柱與圓錐組合而成:其表面積等于圓錐側(cè)面積+圓柱側(cè)面+圓柱底面積.

圓錐S側(cè)=πrl=8π,圓柱側(cè)面+圓柱底面積=4×2πr+π12.【答案】D

【解析】【分析】

本題考查了勾股定理,銳角三角形函數(shù)的定義,利用勾股定理列式求出直角三角形的較短的直角邊是解題的關(guān)鍵.

分別求出大正方形和小正方形的邊長(zhǎng),再利用勾股定理列式求出AC,然后根據(jù)正弦和余弦的定義即可求sinα和cosα的值,進(jìn)而可求出sinα?cosα的值.

【解答】

解:∵小正方形面積為49,大正方形面積為169,

∴小正方形的邊長(zhǎng)是7,大正方形的邊長(zhǎng)是13,

在Rt△ABC中,AC2+BC2=AB2,

即AC2+(7+AC13.【答案】B

【解析】解:設(shè)巡邏船從出發(fā)到成功攔截所用時(shí)間為x小時(shí);如圖所示,

由題意得:∠ABC=45°+75°=120°,AB=12海里,BC=10x海里,AC=14x海里,

過(guò)點(diǎn)A作AD⊥CB的延長(zhǎng)線于點(diǎn)D,

在Rt△ABD中,AB=12海里,∠ABD=45°+(90°?75°)=60°,

∴BD=14.【答案】D

【解析】【解答】

解:如圖所示:位似中心的坐標(biāo)為(0,?1).

故選:D.

15.【答案】C

【解析】解:如圖,延長(zhǎng)BA交y軸于D,則四邊形OCBD為矩形.

∵點(diǎn)A在雙曲線y=2x上,點(diǎn)B在雙曲線y=4x上,

∴S△OAD=1,S矩形OCBD=4,

∴四邊形ABCO的面積=S矩形OCBD?S△OAD=4?116.【答案】B

【解析】解:依題意有△ABF∽△ADE,

∴AB:AD=BF:DE,

即5:AD=0.4:5,

解得AD=62.5,

BD17.【答案】不變

【解析】解:某一幾何體在投影面P前的擺放位置確定以后,改變它與投影面P的距離,其正投影的大小不變,

底面與投影面平行的圓錐體的正投影是圓.

故答案為:不變,圓.

幾何體的正投影只與幾何體相對(duì)于投影面的傾斜程度有關(guān),與兩者間距離無(wú)關(guān)可知答案;確定底面與投影面平行的圓錐體的正投影找到圓錐的主視圖即可.

本題考查了平行投影,解題的關(guān)鍵是熟記概念并靈活運(yùn)用,由平行光線形成的投影是平行投影,如物體在太陽(yáng)光的照射下形成的影子就是平行投影.

18.【答案】245

8【解析】解:∵AB=AC=10,BC=16,

∴∠B=∠C,

∵∠ADE=∠B=α,

∴∠BAD=180°?∠B?∠ADB=180°?α?∠ADB,∠CDE=180°?∠ADE?∠ADB=180°?α?∠ADB,

∴∠BAD=∠CDE19.【答案】7;【解析】【分析】

本題考查菱形的性質(zhì)、等邊三角形的判定和性質(zhì)、直角三角形的判定、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,屬于中考??碱}型.如圖,連接AD,DE,證明∠ADO=90°是解決問(wèn)題的關(guān)鍵.先證出△EOD是等邊三角形,得出DE=EO=EA=1,從而得出∠ADO=90°,利用勾股定理求出AD,AB的長(zhǎng),再根據(jù)平行線的性質(zhì)得出∠BAC=∠ABD,然后利用銳角三角函數(shù)的定義即可求解.

【解答】

解:如圖,連接AD,DE,

∵O20.【答案】解:(1)∵l1//l2//l3.

∴D【解析】(1)由平行線分線段成比例定理得出比例式,即可得出DE的長(zhǎng);

(2)由平行線分線段成比例定理得出比例式,求出BC的長(zhǎng),即可得出AC21.【答案】解:(1)∵(3?tanA?3)2≥0,|2cosB?3|≥0,

∴當(dāng)(3?tanA?3)2+|【解析】(1)根據(jù)偶次方非負(fù)性、絕對(duì)值的非負(fù)性、特殊三角函數(shù)值解決此題.

(2)22.【答案】解:設(shè)CD長(zhǎng)為x米,

∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,

∴MA//CD//BN,

∴E【解析】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.

根據(jù)AM⊥EC,CD⊥EC,BN⊥23.【答案】解:∵∠AEB=90°,AB=200米,坡度為1:3,

∴tan∠ABE=13=33,

∴∠ABE=30°,

∴AE=12A【解析】根據(jù)題意和銳角三角函數(shù)可以求得AE的長(zhǎng),進(jìn)而得到CE的長(zhǎng),再根據(jù)銳角三角函數(shù)可以得到ED的長(zhǎng),最后用勾股定理即可求得CD的長(zhǎng).

本題考查解直角三角形的應(yīng)用-坡度坡角問(wèn)題,解答本題的關(guān)鍵是明確題意,利用銳角三角函數(shù)和數(shù)形結(jié)合的思想解答.

24.【答案】28

【解析】解:(1)∵M(jìn)(2,m)在直線y=?x+4的圖象上,

∴m=?2+4=2,

∴M(2,2),

∵點(diǎn)N與點(diǎn)M關(guān)于y軸對(duì)稱,

∴N(?2,2),

當(dāng)x=0時(shí),y=4,當(dāng)y=0時(shí),x=4,

∴OA=OB=4,

∴S△BOA=12OA?OB=12×4×4=8.

故答案為:2,8;

(2)∵M(jìn)(2,2),N(?2,225.【答案】解:∵CD⊥FB,AB⊥FB,

∴CD//AB

∴【解析】利用三角形相似中的比例關(guān)系,首先由題目和圖形可看出,求AB的長(zhǎng)度分成了2個(gè)部分,AH和HB部分,其中HB=EF=1.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論