2024屆江西豐城市第二中學(xué)高考數(shù)學(xué)五模試卷含解析_第1頁(yè)
2024屆江西豐城市第二中學(xué)高考數(shù)學(xué)五模試卷含解析_第2頁(yè)
2024屆江西豐城市第二中學(xué)高考數(shù)學(xué)五模試卷含解析_第3頁(yè)
2024屆江西豐城市第二中學(xué)高考數(shù)學(xué)五模試卷含解析_第4頁(yè)
2024屆江西豐城市第二中學(xué)高考數(shù)學(xué)五模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江西豐城市第二中學(xué)高考數(shù)學(xué)五模試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國(guó)古典樂器一般按“八音”分類.這是我國(guó)最早按樂器的制造材料來對(duì)樂器進(jìn)行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.2.我國(guó)宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少?gòu)V求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長(zhǎng),,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或3.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對(duì)稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.4.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.5.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B6.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.277.已知,,,則的大小關(guān)系為()A. B. C. D.8.空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢(shì),下列敘述錯(cuò)誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個(gè)月的空氣質(zhì)量越來越好D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好9.設(shè)函數(shù)的定義域?yàn)椋瑵M足,且當(dāng)時(shí),.若對(duì)任意,都有,則的取值范圍是().A. B. C. D.10.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.11.設(shè)過定點(diǎn)的直線與橢圓:交于不同的兩點(diǎn),,若原點(diǎn)在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.12.已知全集,則集合的子集個(gè)數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為定義在上的偶函數(shù),當(dāng)時(shí),(為常數(shù)),若,則實(shí)數(shù)的值為______.14.正四面體的各個(gè)點(diǎn)在平面同側(cè),各點(diǎn)到平面的距離分別為1,2,3,4,則正四面體的棱長(zhǎng)為__________.15.如果拋物線上一點(diǎn)到準(zhǔn)線的距離是6,那么______.16.若展開式中的常數(shù)項(xiàng)為240,則實(shí)數(shù)的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn)為圓:上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過作直線的垂線(當(dāng)、重合時(shí),直線約定為軸),垂足為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求點(diǎn)的軌跡的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程為,連接并延長(zhǎng)交于,求的最大值.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長(zhǎng).19.(12分)在中,a,b,c分別是角A,B,C的對(duì)邊,并且.(1)已知_______________,計(jì)算的面積;請(qǐng)①,②,③這三個(gè)條件中任選兩個(gè),將問題(1)補(bǔ)充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計(jì)分.(2)求的最大值.20.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).(1)求異面直線AP,BM所成角的余弦值;(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.21.(12分)百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該校考人名校的人數(shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,22.(10分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時(shí),若,,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

分別求得所有基本事件個(gè)數(shù)和滿足題意的基本事件個(gè)數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點(diǎn)睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識(shí)求得基本事件總數(shù)和滿足題意的基本事件個(gè)數(shù).2、C【解析】

將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時(shí),由余弦弦定理得:,.當(dāng)時(shí),由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對(duì)數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.3、B【解析】

先利用對(duì)稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對(duì)稱性可得:為的中點(diǎn),且,所以,因?yàn)椋?,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的知識(shí),考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.4、A【解析】

將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項(xiàng).【詳解】由于等差數(shù)列中,所以,化簡(jiǎn)得,所以為.故選:A【點(diǎn)睛】本小題主要考查等差數(shù)列的基本量計(jì)算,屬于基礎(chǔ)題.5、C【解析】試題分析:集合考點(diǎn):集合間的關(guān)系6、D【解析】

設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點(diǎn)睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.7、A【解析】

根據(jù)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因?yàn)?,所?因?yàn)?,所以,因?yàn)?,為增函?shù),所以所以,故選:A.【點(diǎn)睛】本題主要考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.8、C【解析】

結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項(xiàng)中的命題是否正確.【詳解】對(duì)于,由圖可知天的指數(shù)值中有個(gè)低于,個(gè)高于,其中第個(gè)接近,第個(gè)高于,所以中位數(shù)略高于,故正確.對(duì)于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對(duì)于,由圖可知該市月的前天的空氣質(zhì)量越來越好,從第天到第天空氣質(zhì)量越來越差,故錯(cuò)誤.對(duì)于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點(diǎn)睛】本題考查了對(duì)折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運(yùn)用所學(xué)知識(shí)對(duì)命題進(jìn)行判斷,本題較為基礎(chǔ).9、B【解析】

求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時(shí),,,,又,所以至少小于7,此時(shí),令,得,解得或,結(jié)合圖象,故.故選:B.【點(diǎn)睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.10、B【解析】

根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.11、D【解析】

設(shè)直線:,,,由原點(diǎn)在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設(shè)直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點(diǎn)睛】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識(shí)和圓錐曲線與直線交點(diǎn)問題時(shí),通常用直線和圓錐曲線聯(lián)立方程組,通過韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計(jì)算能力,屬于中檔題.12、C【解析】

先求B.再求,求得則子集個(gè)數(shù)可求【詳解】由題=,則集合,故其子集個(gè)數(shù)為故選C【點(diǎn)睛】此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個(gè)數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時(shí),(為常數(shù))求解.【詳解】因?yàn)闉槎x在上的偶函數(shù),所以,又因?yàn)楫?dāng)時(shí),,所以,所以實(shí)數(shù)的值為1.故答案為:1【點(diǎn)睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.14、【解析】

不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),根據(jù)題意F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點(diǎn)A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),如圖所示:由題意得:F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,,頂點(diǎn)D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點(diǎn)A到面EDF的距離為,所以,因?yàn)椋?,解得,故答案為:【點(diǎn)睛】本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,15、【解析】

先求出拋物線的準(zhǔn)線方程,然后根據(jù)點(diǎn)到準(zhǔn)線的距離為6,列出,直接求出結(jié)果.【詳解】拋物線的準(zhǔn)線方程為,由題意得,解得.∵點(diǎn)在拋物線上,∴,∴,故答案為:.【點(diǎn)睛】本小題主要考查拋物線的定義,屬于基礎(chǔ)題.16、-3【解析】

依題意可得二項(xiàng)式展開式的常數(shù)項(xiàng)為即可得到方程,解得即可;【詳解】解:∵二項(xiàng)式的展開式中的常數(shù)項(xiàng)為,∴解得.故答案為:【點(diǎn)睛】本題考查二項(xiàng)式展開式中常數(shù)項(xiàng)的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)設(shè)的極坐標(biāo)為,在中,有,即可得結(jié)果;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,聯(lián)立兩個(gè)方程,可求出,聯(lián)立可得,則計(jì)算可得,利用三角函數(shù)的性質(zhì)可得最值.【詳解】(1)設(shè)的極坐標(biāo)為,在中,有,點(diǎn)的軌跡的極坐標(biāo)方程為;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,由得:,由得:,,,當(dāng),即時(shí),,的最大值為.【點(diǎn)睛】本題考查極坐標(biāo)方程的應(yīng)用,考查三角函數(shù)性質(zhì)的應(yīng)用,是中檔題.18、(1),;(2).【解析】

(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程;(2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標(biāo)方程為:.轉(zhuǎn)換為極坐標(biāo)方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:,化為一般式得化為極坐標(biāo)方程為:.

(2)由于,得,.所以,所以,由于,所以,所以.【點(diǎn)睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標(biāo)方程與極坐標(biāo)方程的互化,熟記公式即可,屬于??碱}型.19、(1)見解析(2)1【解析】

(1)選②,③.可得,結(jié)合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡(jiǎn),根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當(dāng)時(shí),有最大值1.【點(diǎn)睛】本題考查了正余弦定理,三角三角恒等變形,考查了計(jì)算能力,屬于中檔題.20、(1).(2)1【解析】

(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2,由AN=λ,設(shè)N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個(gè)法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因?yàn)镻A⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因?yàn)椤螧AD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標(biāo)系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因?yàn)镸為PC的中點(diǎn),所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因?yàn)锳N=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設(shè)平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個(gè)法向量.因?yàn)橹本€MN與平面PBC所成角的正弦值為,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值為1.【點(diǎn)睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.21

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論