版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年內(nèi)蒙古興安市高三下學期一??荚嚁?shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則的最小值為()A. B. C. D.2.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.3.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.4.已知向量,,則向量與的夾角為()A. B. C. D.5.已知某口袋中有3個白球和個黑球(),現(xiàn)從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數(shù)是.若,則=()A. B.1 C. D.26.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有7.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:8.將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.9.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π10.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.11.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.12.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應(yīng)是:_____.14.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.15.設(shè)實數(shù)滿足約束條件,則的最大值為______.16.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.18.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.19.(12分)設(shè),函數(shù).(1)當時,求在內(nèi)的極值;(2)設(shè)函數(shù),當有兩個極值點時,總有,求實數(shù)的值.20.(12分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數(shù)列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.21.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.22.(10分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用三角恒等變換化簡三角函數(shù)為標準正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.2、A【解析】
執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.3、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).4、C【解析】
求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.5、B【解析】由題意或4,則,故選B.6、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當時,因此有常數(shù),因此是等差數(shù)列,因此當不是等差數(shù)列時,一定有,故本說法正確;D:當時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.8、B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進行求解即可.【詳解】將函數(shù)的圖象向左平移個單位,得到,此時與函數(shù)的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.9、D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.10、B【解析】
設(shè)點、,并設(shè)直線的方程為,由得,將直線的方程代入韋達定理,求得,結(jié)合的面積求得的值,結(jié)合焦點弦長公式可求得.【詳解】設(shè)點、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關(guān)鍵,考查計算能力,屬于中等題.11、B【解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點為F,設(shè)點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.12、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應(yīng)用,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.【點睛】本題考查了程序框圖,意在考查學生的計算能力和理解能力.14、【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進而可寫出半球的半徑與四棱錐體積的關(guān)系,進而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.15、【解析】
試題分析:作出不等式組所表示的平面區(qū)域如圖,當直線過點時,最大,且考點:線性規(guī)劃.16、【解析】
由題得直線的方程為,代入橢圓方程得:,設(shè)點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設(shè)點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關(guān)系,三角形面積計算與離心率的求解,考查了學生的運算求解能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)取的中點,連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點到平面的距離等于點到平面的距離,在平面內(nèi)過點作于點,就是到平面的距離,也就是點到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點,連接、,、分別為、的中點,則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點到平面的距離等于點到平面的距離,在平面內(nèi)過點作于點,平面,平面,,,,平面,即就是到平面的距離,也就是點到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是中檔題.18、(1)(2)【解析】
(1)先消去參數(shù),化為直角坐標方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設(shè),兩點對應(yīng)的極分別為,,則,,所以,又點到直線的距離所以【點睛】本題主要考查參數(shù)方程、直角坐標方程及極坐標方程的轉(zhuǎn)化和直線與曲線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.19、(1)極大值是,無極小值;(2)【解析】
(1)當時,可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單調(diào)遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時,不等式恒成立,即.當時,恒成立,即,令,易證是上的減函數(shù).因此,當時,,故.當時,恒成立,即,因此,當時,所以.綜上所述,.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識,考查分類討論思想、轉(zhuǎn)化思想,考查學生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.20、(1)見解析,或;(2)存在,.【解析】
(1)滿足題意有兩種組合:①,,,②,,,分別計算即可;(2)由(1)分別討論兩種情況,假設(shè)存在正整數(shù),使得,,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時等差數(shù)列,,,所以其通項公式為.②,,,此時等差數(shù)列,,,所以其通項公式為.(2)若選擇①,.則.若,,成等比數(shù)列,則,即,整理,得,即,此方程無正整數(shù)解,故不存在正整數(shù),使,,成等比數(shù)列.若選則②,,則,若,,成等比數(shù)列,則,即,整理得,因為為正整數(shù),所以.故存在正整數(shù),使,,成等比數(shù)列.【點睛】本題考查等差數(shù)列的通項公式及前n項和,涉及到等比數(shù)列的性質(zhì),是一道中檔題.21、(1)故函數(shù)在上單調(diào)遞增,在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度林業(yè)生態(tài)補償項目承包協(xié)議4篇
- 2025年度鋁合金門窗行業(yè)節(jié)能減排技術(shù)改造合同4篇
- 2025年樹木移植與銷售服務(wù)合同范本3篇
- 二零二五年房地產(chǎn)租賃市場競價管理合同3篇
- 二零二五年度互聯(lián)網(wǎng)廣告投放合同補充條款4篇
- 物業(yè)服務(wù)商與商戶就2025年度物業(yè)管理服務(wù)簽訂的協(xié)議2篇
- 二零二五版凈水器品牌授權(quán)及市場推廣合同3篇
- 二零二五版合同標的知識產(chǎn)權(quán)補充保護條款追加協(xié)議2篇
- 2025年度教育資源共享平臺居間合作合同樣本4篇
- 2025年度變壓器行業(yè)質(zhì)量檢測與認證合同4篇
- 【智慧校園】-智慧校園系統(tǒng)方案
- 康佳液晶電視企業(yè)文化(課堂PPT)
- 個人養(yǎng)老金:是什么、怎么繳、如何領(lǐng)PPT個人養(yǎng)老金基礎(chǔ)知識培訓(xùn)PPT課件(帶內(nèi)容)
- 雞鴨屠宰生產(chǎn)企業(yè)安全風險分級管控資料
- 醫(yī)院感染管理組織架構(gòu)圖
- 《工程招投標與合同管理》題庫試題及答案 共5套試卷
- 離子色譜法分析氯化物原始記錄 (1)
- 高等數(shù)學說課稿PPT課件(PPT 49頁)
- 造影劑腎病概述和性質(zhì)
- 單片機交通燈系統(tǒng)設(shè)計報告
- 標桿房企人力資源體系研究之龍湖
評論
0/150
提交評論