2023-2024學(xué)年江蘇省如東縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年江蘇省如東縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年江蘇省如東縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年江蘇省如東縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年江蘇省如東縣高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省如東縣高三第二次調(diào)研數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線:的焦點為,準(zhǔn)線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.2.已知函數(shù),若關(guān)于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.83.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.4.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.5.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.6.“學(xué)習(xí)強國”學(xué)習(xí)平臺是由中宣部主管,以深入學(xué)習(xí)宣傳新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員?面向全社會的優(yōu)質(zhì)平臺,現(xiàn)日益成為老百姓了解國家動態(tài)?緊跟時代脈搏的熱門?該款軟件主要設(shè)有“閱讀文章”?“視聽學(xué)習(xí)”兩個學(xué)習(xí)模塊和“每日答題”?“每周答題”?“專項答題”?“挑戰(zhàn)答題”四個答題模塊?某人在學(xué)習(xí)過程中,“閱讀文章”不能放首位,四個答題板塊中有且僅有三個答題板塊相鄰的學(xué)習(xí)方法有()A.60 B.192 C.240 D.4327.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標(biāo)原點),則雙曲線的離心率為()A. B. C. D.8.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.9.如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學(xué)成績平均分的平均水平高于乙班B.甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學(xué)測試的總平均分是10310.已知數(shù)列的通項公式為,將這個數(shù)列中的項擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項和為()A. B. C. D.11.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④12.設(shè)點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記Sk=1k+2k+3k+……+nk,當(dāng)k=1,2,3,……時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.14.已知的終邊過點,若,則__________.15.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.16.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.18.(12分)已知集合,.(1)若,則;(2)若,求實數(shù)的取值范圍.19.(12分)已知函數(shù).(1)證明:當(dāng)時,;(2)若函數(shù)有三個零點,求實數(shù)的取值范圍.20.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.21.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求的值;(2)若,求的面積.22.(10分)是數(shù)列的前項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列中最小的項.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.2、D【解析】

畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時,,由于關(guān)于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時,,則不滿足題意;當(dāng)時,當(dāng)時,,沒有整數(shù)解當(dāng)時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.3、A【解析】

由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點在雙曲線右支上運動,則,當(dāng)時,此時,所以,,所以;當(dāng)軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.4、D【解析】

設(shè)等比數(shù)列的公比為q,,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設(shè)公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應(yīng)用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎(chǔ)題.5、B【解析】

設(shè),則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.6、C【解析】

四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為.故選:C.【點睛】本題考查排列組合的應(yīng)用,考查捆綁法和插入法求解排列問題.對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.7、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).8、C【解析】

利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時選擇合適的中間值比較是關(guān)鍵,注意合理地進行等價轉(zhuǎn)化.9、D【解析】

計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計算能力和應(yīng)用能力.10、D【解析】

由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.11、B【解析】

由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對每個命題進行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).12、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【點睛】本題考查了歸納推理,意在考查學(xué)生的推理能力.14、【解析】

】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過點,若,.即答案為-2.【點睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.15、-2【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可.【詳解】由題意得:目標(biāo)函數(shù)在點B取得最大值為7,在點A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.16、【解析】

由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準(zhǔn)線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準(zhǔn)線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由正弦定理可得,,化簡并結(jié)合,可求得三者間的關(guān)系,代入余弦定理可求得;(2)由(1)可求得,再結(jié)合三角形的面積公式,可求出,從而可求出答案.【詳解】(1)因為,所以,整理得:.因為,所以,所以.由余弦定理可得.(2)由(1)知,則,因為的面積是,所以,即,解得,則.故的周長為:.【點睛】本題考查了正弦定理、余弦定理在解三角形中的應(yīng)用,考查了三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.18、(1);(2)【解析】

(1)將代入可得集合B,解對數(shù)不等式可得集合A,由并集運算即可得解.(2)由可知B為A的子集,即;當(dāng)符合題意,當(dāng)B不為空集時,由不等式關(guān)系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因為,故;若,即時,,符合題意;若,即時,,解得;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查了集合的并集運算,由集合的包含關(guān)系求參數(shù)的取值范圍,注意討論集合是否為空集的情況,屬于基礎(chǔ)題.19、(1)見解析;(2)【解析】

(1)要證明,只需證明即可;(2)有3個根,可轉(zhuǎn)化為有3個根,即與有3個不同交點,利用導(dǎo)數(shù)作出的圖象即可.【詳解】(1)令,則,當(dāng)時,,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當(dāng)時,,當(dāng)時,,當(dāng)時,,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實數(shù)的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)證明不等式以及研究函數(shù)零點個數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.20、(1)l:,C方程為;(2)=【解析】

(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進行轉(zhuǎn)換.

(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進一步轉(zhuǎn)換為.直線l的極坐標(biāo)方程為ρcos(θ+)=1,則轉(zhuǎn)換為直角坐標(biāo)方程為.(2)將直線的方程轉(zhuǎn)換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應(yīng)的參數(shù)),所以,,所以=.【點睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.21、(1);(2).【解析】

(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對余

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論