2024屆福建省福州倉山區(qū)七校聯(lián)考中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁
2024屆福建省福州倉山區(qū)七校聯(lián)考中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁
2024屆福建省福州倉山區(qū)七校聯(lián)考中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁
2024屆福建省福州倉山區(qū)七校聯(lián)考中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁
2024屆福建省福州倉山區(qū)七校聯(lián)考中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆福建省福州倉山區(qū)七校聯(lián)考中考數(shù)學(xué)最后沖刺模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a42.若關(guān)于x的一元二次方程x2﹣2x+m=0沒有實數(shù)根,則實數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣13.春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項工作,為此,某校對學(xué)生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關(guān)系,在打開門窗通風(fēng)前分別滿足兩個一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時間達到了C.當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當(dāng)室內(nèi)空氣中的含藥量低于時,對人體才是安全的,所以從室內(nèi)空氣中的含藥量達到開始,需經(jīng)過后,學(xué)生才能進入室內(nèi)4.如圖,已知菱形ABCD,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為()A.16 B.12 C.24 D.185.某籃球運動員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.據(jù)悉,超級磁力風(fēng)力發(fā)電機可以大幅度提升風(fēng)力發(fā)電效率,但其造價高昂,每座磁力風(fēng)力發(fā)電機,其建造花費估計要5300萬美元,“5300萬”用科學(xué)記數(shù)法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1087.如圖,正比例函數(shù)y=x與反比例函數(shù)y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當(dāng)y=x的函數(shù)值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.的倒數(shù)是()A. B.3 C. D.9.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>210.在武漢市舉辦的“讀好書、講禮儀”活動中,某學(xué)校積極行動,各班圖書角的新書、好書不斷增多,除學(xué)校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學(xué)捐獻圖書的情況統(tǒng)計圖,根據(jù)圖中信息,該班平均每人捐書的冊數(shù)是()A.3B.3.2C.4D.4.511.邊長相等的正三角形和正六邊形的面積之比為()A.1∶3 B.2∶3 C.1∶6 D.1∶12.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結(jié)果保留根號).14.在函數(shù)中,自變量x的取值范圍是_________.15.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.16.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____17.如圖,已知∠A+∠C=180°,∠APM=118°,則∠CQN=_____°.18.解不等式組請結(jié)合題意填空,完成本題的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.20.(6分)為了解黔東南州某縣中考學(xué)生的體育考試得分情況,從該縣參加體育考試的4000名學(xué)生中隨機抽取了100名學(xué)生的體育考試成績作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計表和頻數(shù)分布直方圖.成績分組

組中值

頻數(shù)

25≤x<30

27.5

4

30≤x<35

32.5

m

35≤x<40

37.5

24

40≤x<45

a

36

45≤x<50

47.5

n

50≤x<55

52.5

4

(1)求a、m、n的值,并補全頻數(shù)分布直方圖;(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請問該縣中考體育成績優(yōu)秀學(xué)生人數(shù)約為多少?21.(6分)如圖1,拋物線y=ax2+(a+2)x+2(a≠0),與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.(1)求拋物線的解析式;(2)若PN:PM=1:4,求m的值;(3)如圖2,在(2)的條件下,設(shè)動點P對應(yīng)的位置是P1,將線段OP1繞點O逆時針旋轉(zhuǎn)得到OP2,旋轉(zhuǎn)角為α(0°<α<90°),連接AP2、BP2,求AP2+的最小值.22.(8分)某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:(1)本次調(diào)查的學(xué)生有多少人?(2)補全上面的條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是;(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?23.(8分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t.(1)求拋物線的表達式;(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標(biāo).24.(10分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.25.(10分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.26.(12分)先化簡,再求值:(1﹣)÷,其中x=1.27.(12分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結(jié)果保留根號)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

各項計算得到結(jié)果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.2、C【解析】試題解析:關(guān)于的一元二次方程沒有實數(shù)根,,解得:故選C.3、C【解析】

利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時間達到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.【點睛】本題考查反比例函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是讀懂圖象信息,屬于中考??碱}型.4、A【解析】

由菱形ABCD,∠B=60°,易證得△ABC是等邊三角形,繼而可得AC=AB=4,則可求得以AC為邊長的正方形ACEF的周長.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等邊三角形,∴AC=AB=BC=4,∴以AC為邊長的正方形ACEF的周長為:4AC=1.故選A.【點睛】本題考查了菱形的性質(zhì)、正方形的性質(zhì)以及等邊三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).6、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:5300萬=53000000=.故選C.【點睛】在把一個絕對值較大的數(shù)用科學(xué)記數(shù)法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點移位來確定).7、D【解析】試題分析:觀察函數(shù)圖象得到當(dāng)﹣2<x<0或x>2時,正比例函數(shù)圖象都在反比例函數(shù)圖象上方,即有y=x的函數(shù)值大于y=4考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.數(shù)形結(jié)合思想的應(yīng)用.8、A【解析】

解:的倒數(shù)是.故選A.【點睛】本題考查倒數(shù),掌握概念正確計算是解題關(guān)鍵.9、A【解析】

先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.10、B【解析】七年級(1)班捐獻圖書的同學(xué)人數(shù)為9÷18%=50人,捐獻4冊的人數(shù)為50×30%=15人,捐獻3冊的人數(shù)為50-6-9-15-8=12人,所以該班平均每人捐書的冊數(shù)為(6+9×2+12×3+15×4+8×5)÷50=3.2冊,故選B.11、C【解析】解:設(shè)正三角形的邊長為1a,則正六邊形的邊長為1a.過A作AD⊥BC于D,則∠BAD=30°,AD=AB?cos30°=1a?=a,∴S△ABC=BC?AD=×1a×a=a1.連接OA、OB,過O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB?cos30°=1a?=a,∴S△ABO=BA?OD=×1a×a=a1,∴正六邊形的面積為:2a1,∴邊長相等的正三角形和正六邊形的面積之比為:a1:2a1=1:2.故選C.點睛:本題主要考查了正三角形與正六邊形的性質(zhì),根據(jù)已知利用解直角三角形知識求出正六邊形面積是解題的關(guān)鍵.12、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結(jié)果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、100+100【解析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,繼而可得∠DCB=60°,從而可得AD=CD=100米,DB=100米,再根據(jù)AB=AD+DB計算即可得.【詳解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD?tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案為:100+100.【點睛】本題考查了解直角三角形的應(yīng)用﹣﹣仰角俯角問題,解題的關(guān)鍵是借助俯角構(gòu)造直角三角形并解直角三角形.注意方程思想與數(shù)形結(jié)合思想的應(yīng)用.14、x≤1且x≠﹣1【解析】試題分析:根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點:函數(shù)自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.15、2【解析】

連接OC,根據(jù)勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結(jié)論.【詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【點睛】本題考查切線的性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考常考題型.16、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.17、1【解析】

先根據(jù)同旁內(nèi)角互補兩直線平行知AB∥CD,據(jù)此依據(jù)平行線性質(zhì)知∠APM=∠CQM=118°,由鄰補角定義可得答案.【詳解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案為:1.【點睛】本題主要考查平行線的判定與性質(zhì),解題的關(guān)鍵是掌握平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.18、詳見解析.【解析】

先根據(jù)不等式的性質(zhì)求出每個不等式的解集,再在數(shù)軸上表示出來,根據(jù)數(shù)軸找出不等式組公共部分即可.【詳解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:(Ⅳ)原不等式組的解集為:﹣1≤x<1,故答案為:x<1、x≥﹣1、﹣1≤x<1.【點睛】本題考查了解一元一次不等式組的概念.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標(biāo),利用交點式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標(biāo),表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標(biāo);同理可得其他圖形中點P的坐標(biāo).詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當(dāng)m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標(biāo)為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標(biāo)為(,)或(,);綜上所述,點P的坐標(biāo)是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.20、(1)詳見解析(2)2400【解析】

(1)求出組距,然后利用37.5加上組距就是a的值;根據(jù)頻數(shù)分布直方圖即可求得m的值,然后利用總?cè)藬?shù)100減去其它各組的人數(shù)就是n的值.(2)利用總?cè)藬?shù)4000乘以優(yōu)秀的人數(shù)所占的比例即可求得優(yōu)秀的人數(shù).【詳解】解:(1)組距是:37.5﹣32.5=5,則a=37.5+5=42.5;根據(jù)頻數(shù)分布直方圖可得:m=12;則n=100﹣4﹣12﹣24﹣36﹣4=1.補全頻數(shù)分布直方圖如下:(2)∵優(yōu)秀的人數(shù)所占的比例是:=0.6,∴該縣中考體育成績優(yōu)秀學(xué)生人數(shù)約為:4000×0.6=2400(人)21、(1);(2)m=3;(3)【解析】

(1)本題需先根據(jù)圖象過A點,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由條件可得到關(guān)于m的方程,則可求得m的值;(3)在y軸上取一點Q,使,可證的△P2OB∽△QOP2,則可求得Q點坐標(biāo),則可把AP2+BP2轉(zhuǎn)換為AP2+QP2,利用三角形三邊關(guān)系可知當(dāng)A、P2、Q三點在一條線上時,有最小值,則可求出答案.【詳解】解:(1)∵A(4,0)在拋物線上,∴0=16a+4(a+2)+2,解得a=﹣,∴拋物線的解析式為y=;(2)∵∴令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x軸,∴△OAB∽△PAN,∴,∴,∴,∵M在拋物線上,∴PM=+2,∵PN:MN=1:3,∴PN:PM=1:4,∴,解得m=3或m=4(舍去);(3)在y軸上取一點Q,使,如圖,由(2)可知P1(3,0),且OB=2,∴,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴,∴當(dāng)Q(0,)時,QP2=,∴AP2+BP2=AP2+QP2≥AQ,∴當(dāng)A、P2、Q三點在一條線上時,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值為【點睛】本題考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標(biāo)系里表示三角形的面積及線段和最小值問題,要求會用字母代替長度,坐標(biāo),會對代數(shù)式進行合理變形,難度相對較大.22、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】

(1)根據(jù)喜好A口味的牛奶的學(xué)生人數(shù)和所占百分比,即可求出本次調(diào)查的學(xué)生數(shù).(2)用調(diào)查總?cè)藬?shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補全統(tǒng)計圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對應(yīng)中心角度數(shù).(3)用總?cè)藬?shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調(diào)查的學(xué)生有30÷20%=150人;(2)C類別人數(shù)為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得出必要的信息是解題的關(guān)鍵.23、(1)y=﹣x2+2x+1.(2)當(dāng)t=2時,點M的坐標(biāo)為(1,6);當(dāng)t≠2時,不存在,理由見解析;(1)y=﹣x+1;P點到直線BC的距離的最大值為,此時點P的坐標(biāo)為(,).【解析】【分析】(1)由點A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標(biāo)可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當(dāng)t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據(jù)點C的坐標(biāo)利用平行四邊形的性質(zhì)可求出點P、M的坐標(biāo);當(dāng)t≠2時,不存在,利用平行四邊形對角線互相平分結(jié)合CE≠PE可得出此時不存在符合題意的點M;(1)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標(biāo)利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點P的坐標(biāo)可得出點F的坐標(biāo),進而可得出PF的長度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標(biāo)即可得出結(jié)論.【詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對稱軸l于點E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,∴拋物線的對稱軸為直線x=1,當(dāng)t=2時,點C、P關(guān)于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,∵拋物線的表達式為y=﹣x2+2x+1,∴點C的坐標(biāo)為(0,1),點P的坐標(biāo)為(2,1),∴點M的坐標(biāo)為(1,6);當(dāng)t≠2時,不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點C的橫坐標(biāo)為0,點E的橫坐標(biāo)為0,∴點P的橫坐標(biāo)t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過點P作PF∥y軸,交BC于點F.設(shè)直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點P的坐標(biāo)為(t,﹣t2+2t+1),∴點F的坐標(biāo)為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當(dāng)t=時,S取最大值,最大值為.∵點B的坐標(biāo)為(1,0),點C的坐標(biāo)為(0,1),∴線段BC=,∴P點到直線BC的距離的最大值為,此時點P的坐標(biāo)為(,).【點睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、平行四邊形的判定與性質(zhì)、三角形的面積、一次(二次)函數(shù)圖象上點的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)由點的坐標(biāo),利用待定系數(shù)法求出拋物線表達式;(2)分t=2和t≠2兩種情況考慮

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論