版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省新鄉(xiāng)市第七中學(xué)2024年高三第三次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.2.的二項(xiàng)展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-283.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.4.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)5.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有6.若函數(shù)()的圖象過點(diǎn),則()A.函數(shù)的值域是 B.點(diǎn)是的一個對稱中心C.函數(shù)的最小正周期是 D.直線是的一條對稱軸7.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對稱,且,若,則()A.0 B.1 C.673 D.6748.若復(fù)數(shù)(為虛數(shù)單位)的實(shí)部與虛部相等,則的值為()A. B. C. D.9.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動點(diǎn),為軸上的動點(diǎn),則的最大值是()A. B.9 C.7 D.10.已知雙曲線與雙曲線沒有公共點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.11.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.12.已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn)及點(diǎn),則雙曲線的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)滿足,則的最大值為________.14.已知實(shí)數(shù)滿足則點(diǎn)構(gòu)成的區(qū)域的面積為____,的最大值為_________15.已知集合,其中,.且,則集合中所有元素的和為_________.16.在平面直角坐標(biāo)系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點(diǎn)P,且點(diǎn)P關(guān)于直線x-y=0的對稱點(diǎn)Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的導(dǎo)函數(shù)的兩個零點(diǎn)為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.18.(12分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.19.(12分)已知函數(shù).(1)若在上是減函數(shù),求實(shí)數(shù)的最大值;(2)若,求證:.20.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個極值點(diǎn),,若,求的最小值.21.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結(jié)束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測出件次品或者檢測出件正品時所需要的檢測費(fèi)用(單位:元),求的分布列.22.(10分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點(diǎn),且.(1)求證:平面ACE;(2)當(dāng)PA的長為何值時,AC與平面PCD所成的角為?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A【點(diǎn)睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運(yùn)算求解的能力,屬于中檔題.2、A【解析】試題分析:由題意得,二項(xiàng)展開式的通項(xiàng)為,令,所以的系數(shù)是,故選A.考點(diǎn):二項(xiàng)式定理的應(yīng)用.3、D【解析】
先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)?,?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.4、D【解析】
根據(jù)所給的雷達(dá)圖逐個選項(xiàng)分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算為80分,不是最強(qiáng)的,故D錯誤;故選:D【點(diǎn)睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.5、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當(dāng)時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當(dāng)時,因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時,一定有,故本說法正確;D:當(dāng)時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.6、A【解析】
根據(jù)函數(shù)的圖像過點(diǎn),求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過點(diǎn),可得,即,,,故,對于A,由,則,故A正確;對于B,當(dāng)時,,故B錯誤;對于C,,故C錯誤;對于D,當(dāng)時,,故D錯誤;故選:A【點(diǎn)睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.7、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進(jìn)行化簡可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)?,故,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.8、C【解析】
利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【詳解】,又的實(shí)部與虛部相等,,解得.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的除法運(yùn)算,復(fù)數(shù)的概念運(yùn)用.9、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.10、C【解析】
先求得的漸近線方程,根據(jù)沒有公共點(diǎn),判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點(diǎn),所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.11、A【解析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生運(yùn)算能力,是一道容易題.12、C【解析】
根據(jù)雙曲線方程求出漸近線方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出不等式組所表示的平面區(qū)域,將目標(biāo)函數(shù)看作點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,代入點(diǎn)A的坐標(biāo)可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點(diǎn),目標(biāo)函數(shù)表示點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.【點(diǎn)睛】本題考查求目標(biāo)函數(shù)的最值,關(guān)鍵在于明確目標(biāo)函數(shù)的幾何意義,屬于中檔題.14、811【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標(biāo)函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域?yàn)槿切危业走呴L,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時,z最大,故.故答案為:;11.【點(diǎn)睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎(chǔ)題.15、2889【解析】
先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當(dāng)時,集合中最小數(shù);當(dāng)時,得到集合中最大的數(shù);故答案為:2889【點(diǎn)睛】本題考查了數(shù)列與集合綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、【解析】
設(shè)圓C1上存在點(diǎn)P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉(zhuǎn)化成兩個新圓有公共點(diǎn)求參數(shù)范圍.【詳解】設(shè)圓C1上存在點(diǎn)P(x0,y0)滿足題意,點(diǎn)P關(guān)于直線x-y=0的對稱點(diǎn)Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點(diǎn)即可,所以|r-1|≤≤r+1,解得.故答案為:【點(diǎn)睛】此題考查圓與圓的位置關(guān)系,其中涉及點(diǎn)關(guān)于直線對稱點(diǎn)問題,兩個圓有公共點(diǎn)的判定方式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)最大值是.【解析】
(1)求得,由題意可知和是函數(shù)的兩個零點(diǎn),根據(jù)函數(shù)的符號變化可得出的符號變化,進(jìn)而可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結(jié)論知,函數(shù)的極小值為,進(jìn)而得出,解出、、的值,然后利用導(dǎo)數(shù)可求得函數(shù)在區(qū)間上的最大值.【詳解】(1),令,因?yàn)椋缘牧泓c(diǎn)就是的零點(diǎn),且與符號相同.又因?yàn)?,所以?dāng)時,,即;當(dāng)或時,,即.所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)由(1)知,是的極小值點(diǎn),所以有,解得,,,所以.因?yàn)楹瘮?shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數(shù)在區(qū)間上的最大值是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間與最值,考查計算能力,屬于中等題.18、【解析】
將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,直線的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求實(shí)數(shù)的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點(diǎn)睛】本題重點(diǎn)考查方程的互化,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.19、(1)(2)詳見解析【解析】
(1),在上,因?yàn)槭菧p函數(shù),所以恒成立,即恒成立,只需.令,,則,因?yàn)椋?所以在上是增函數(shù),所以,所以,解得.所以實(shí)數(shù)的最大值為.(2),.令,則,根據(jù)題意知,所以在上是增函數(shù).又因?yàn)椋?dāng)從正方向趨近于0時,趨近于,趨近于1,所以,所以存在,使,即,,所以對任意,,即,所以在上是減函數(shù);對任意,,即,所以在上是增函數(shù),所以當(dāng)時,取得最小值,最小值為.由于,,則,當(dāng)且僅當(dāng),即時取等號,所以當(dāng)時,.20、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】
(1)求出f(x)的導(dǎo)數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進(jìn)而得到函數(shù)的極值;(2)由題意可得,,求出的表達(dá)式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導(dǎo),得到,結(jié)合,當(dāng)?shù)玫剑涸鰠^(qū)間為,當(dāng),得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導(dǎo)得到,令,得到,,,,,,,,因?yàn)?,所以設(shè),令,則所以在單調(diào)遞減,又因?yàn)樗?所以或又因?yàn)?,所以所?所以的最小值為.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識,是一道綜合題.21、(1);(2)見解析.【解析】
(1)利用獨(dú)立事件的概率乘法公式可計算出所求事件的概率;(2)由題意可知隨機(jī)變量的可能取值有、、,計算出隨機(jī)變量在不同取值下的概率,由此可得出隨機(jī)變量的分布列.【詳解】(1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;(2)由題意可知,隨機(jī)變量的可能取值為、、.則,,.故的分布列為【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度企業(yè)合規(guī)管理體系建設(shè)合同范本及實(shí)施指南3篇
- 2025年度個人貨車租賃合同保險條款說明3篇
- 2025年度旅游行業(yè)知識產(chǎn)權(quán)顧問合同4篇
- 2025年女方放棄撫養(yǎng)費(fèi)及子女監(jiān)護(hù)權(quán)離婚協(xié)議書子女成長支持協(xié)議
- 2025年度高新技術(shù)企業(yè)股份無償贈與合作協(xié)議
- 二零二五年度石材行業(yè)環(huán)保政策咨詢合同
- 二零二五年度專業(yè)護(hù)理機(jī)構(gòu)護(hù)工勞動合同
- 二零二五年度銀行承兌匯票擔(dān)保業(yè)務(wù)風(fēng)險管理協(xié)議
- 二零二五版房建木工勞務(wù)合同合同解除與終止流程范本3篇
- 2025年度農(nóng)產(chǎn)品電商銷售合同履約保障與風(fēng)險控制
- 《色彩基礎(chǔ)》課程標(biāo)準(zhǔn)
- 人力資源 -人效評估指導(dǎo)手冊
- 大疆80分鐘在線測評題
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 2024中考復(fù)習(xí)必背初中英語單詞詞匯表(蘇教譯林版)
- 《現(xiàn)代根管治療術(shù)》課件
- 肩袖損傷的護(hù)理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學(xué)試卷
- 公司差旅費(fèi)報銷單
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
評論
0/150
提交評論