西藏拉薩市那曲二2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第1頁(yè)
西藏拉薩市那曲二2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第2頁(yè)
西藏拉薩市那曲二2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第3頁(yè)
西藏拉薩市那曲二2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第4頁(yè)
西藏拉薩市那曲二2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

西藏拉薩市那曲二2024屆高考?jí)狠S卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)2.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,3.記為等差數(shù)列的前項(xiàng)和.若,,則()A.5 B.3 C.-12 D.-134.已知集合,則=A. B. C. D.5.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)6.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.7.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.8.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.9.已知隨機(jī)變量的分布列是則()A. B. C. D.10.為雙曲線(xiàn)的左焦點(diǎn),過(guò)點(diǎn)的直線(xiàn)與圓交于、兩點(diǎn),(在、之間)與雙曲線(xiàn)在第一象限的交點(diǎn)為,為坐標(biāo)原點(diǎn),若,且,則雙曲線(xiàn)的離心率為()A. B. C. D.11.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線(xiàn)與平面所成角為,直線(xiàn)與平面所成角為,則()A. B. C. D.12.已知雙曲線(xiàn),點(diǎn)是直線(xiàn)上任意一點(diǎn),若圓與雙曲線(xiàn)的右支沒(méi)有公共點(diǎn),則雙曲線(xiàn)的離心率取值范圍是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿(mǎn)足約束條件則的最小值為_(kāi)_________.14.已知函數(shù),若函數(shù)恰有4個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.15.已知是拋物線(xiàn)的焦點(diǎn),是上一點(diǎn),的延長(zhǎng)線(xiàn)交軸于點(diǎn).若為的中點(diǎn),則_________.16.設(shè)是公差不為0的等差數(shù)列的前n項(xiàng)和,且,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,內(nèi)角的邊長(zhǎng)分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.18.(12分)2018年9月,臺(tái)風(fēng)“山竹”在我國(guó)多個(gè)省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個(gè)農(nóng)戶(hù)在該次臺(tái)風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計(jì)該地區(qū)每個(gè)農(nóng)戶(hù)的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);(2)臺(tái)風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣?huì)發(fā)出倡議,為該地區(qū)的農(nóng)戶(hù)捐款幫扶,現(xiàn)從這50戶(hù)并且損失超過(guò)4000元的農(nóng)戶(hù)中隨機(jī)抽取2戶(hù)進(jìn)行重點(diǎn)幫扶,設(shè)抽出損失超過(guò)8000元的農(nóng)戶(hù)數(shù)為,求的分布列和數(shù)學(xué)期望.19.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線(xiàn)交橢圓于兩點(diǎn),線(xiàn)段的中點(diǎn)在直線(xiàn)上,求證:線(xiàn)段的中垂線(xiàn)恒過(guò)定點(diǎn).20.(12分)已知,.(1)解不等式;(2)若方程有三個(gè)解,求實(shí)數(shù)的取值范圍.21.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知:,:,:.(1)求與的極坐標(biāo)方程(2)若與交于點(diǎn)A,與交于點(diǎn)B,,求的最大值.22.(10分)已知函數(shù),且.(1)若,求的最小值,并求此時(shí)的值;(2)若,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】試題分析:,,所以,即集合中共有3個(gè)元素,故選A.考點(diǎn):集合的運(yùn)算.2、D【解析】

根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項(xiàng).【詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.【點(diǎn)睛】本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.3、B【解析】

由題得,,解得,,計(jì)算可得.【詳解】,,,,解得,,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.4、C【解析】

本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運(yùn)算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.【點(diǎn)睛】不能領(lǐng)會(huì)交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.5、D【解析】

將復(fù)數(shù)整理為的形式,分別判斷四個(gè)選項(xiàng)即可得到結(jié)果.【詳解】的虛部為,錯(cuò)誤;,錯(cuò)誤;,錯(cuò)誤;,為純虛數(shù),正確本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模長(zhǎng)、實(shí)部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類(lèi)的知識(shí),屬于基礎(chǔ)題.6、C【解析】

根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,,當(dāng)時(shí),,因?yàn)?,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對(duì)的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.7、B【解析】

利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【詳解】由題意,,解得.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.8、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.9、C【解析】

利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識(shí)的考查.10、D【解析】

過(guò)點(diǎn)作,可得出點(diǎn)為的中點(diǎn),由可求得的值,可計(jì)算出的值,進(jìn)而可得出,結(jié)合可知點(diǎn)為的中點(diǎn),可得出,利用勾股定理求得(為雙曲線(xiàn)的右焦點(diǎn)),再利用雙曲線(xiàn)的定義可求得該雙曲線(xiàn)的離心率的值.【詳解】如下圖所示,過(guò)點(diǎn)作,設(shè)該雙曲線(xiàn)的右焦點(diǎn)為,連接.,.,,,為的中點(diǎn),,,,,由雙曲線(xiàn)的定義得,即,因此,該雙曲線(xiàn)的離心率為.故選:D.【點(diǎn)睛】本題考查雙曲線(xiàn)離心率的求解,解題時(shí)要充分分析圖形的形狀,考查推理能力與計(jì)算能力,屬于中等題.11、A【解析】

作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線(xiàn)面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線(xiàn)與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號(hào).又直線(xiàn)與平面所成角為,且為直線(xiàn)與平面內(nèi)的直線(xiàn)所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號(hào).故.故選:A【點(diǎn)睛】本題主要考查了線(xiàn)面角與線(xiàn)線(xiàn)角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線(xiàn)面角的最小性進(jìn)行判定.屬于中檔題.12、B【解析】

先求出雙曲線(xiàn)的漸近線(xiàn)方程,可得則直線(xiàn)與直線(xiàn)的距離,根據(jù)圓與雙曲線(xiàn)的右支沒(méi)有公共點(diǎn),可得,解得即可.【詳解】由題意,雙曲線(xiàn)的一條漸近線(xiàn)方程為,即,∵是直線(xiàn)上任意一點(diǎn),則直線(xiàn)與直線(xiàn)的距離,∵圓與雙曲線(xiàn)的右支沒(méi)有公共點(diǎn),則,∴,即,又故的取值范圍為,故選:B.【點(diǎn)睛】本題主要考查了直線(xiàn)和雙曲線(xiàn)的位置關(guān)系,以及兩平行線(xiàn)間的距離公式,其中解答中根據(jù)圓與雙曲線(xiàn)的右支沒(méi)有公共點(diǎn)得出是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫(huà)出可行域,通過(guò)平移基準(zhǔn)直線(xiàn)到可行域邊界位置,由此求得目標(biāo)函數(shù)的最小值.【詳解】畫(huà)出可行域如下圖所示,由圖可知:可行域是由三點(diǎn),,構(gòu)成的三角形及其內(nèi)部,當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),取得最小值.故答案為:【點(diǎn)睛】本小題主要考查利用線(xiàn)性規(guī)劃求目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、【解析】

函數(shù)恰有4個(gè)零點(diǎn),等價(jià)于函數(shù)與函數(shù)的圖象有四個(gè)不同的交點(diǎn),畫(huà)出函數(shù)圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】函數(shù)恰有4個(gè)零點(diǎn),等價(jià)于函數(shù)與函數(shù)的圖象有四個(gè)不同的交點(diǎn),畫(huà)出函數(shù)圖象如下圖所示:由圖象可知:實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查了已知函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)取值范圍問(wèn)題,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想.15、【解析】

由題意可得,又由于為的中點(diǎn),且點(diǎn)在軸上,所以可得點(diǎn)的橫坐標(biāo),代入拋物線(xiàn)方程中可求點(diǎn)的縱坐標(biāo),從而可求出點(diǎn)的坐標(biāo),再利用兩點(diǎn)間的距離公式可求得結(jié)果.【詳解】解:因?yàn)槭菕佄锞€(xiàn)的焦點(diǎn),所以,設(shè)點(diǎn)的坐標(biāo)為,因?yàn)闉榈闹悬c(diǎn),而點(diǎn)的橫坐標(biāo)為0,所以,所以,解得,所以點(diǎn)的坐標(biāo)為所以,故答案為:【點(diǎn)睛】此題考查拋物線(xiàn)的性質(zhì),中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題.16、18【解析】

將已知已知轉(zhuǎn)化為的形式,化簡(jiǎn)后求得,利用等差數(shù)列前公式化簡(jiǎn),由此求得表達(dá)式的值.【詳解】因?yàn)?,所?故填:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,考查等差數(shù)列的性質(zhì)以及求和,考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計(jì)算即可得到所求值;

(2)運(yùn)用二倍角的余弦公式和兩角和的正弦公式,化簡(jiǎn)可得sinA+sinB=5sinC,運(yùn)用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點(diǎn)睛】本題考查正弦定理、余弦定理和面積公式的運(yùn)用,以及三角函數(shù)的恒等變換,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.18、(1)3360元;(2)見(jiàn)解析【解析】

(1)根據(jù)頻率分布直方圖計(jì)算每個(gè)農(nóng)戶(hù)的平均損失;(2)根據(jù)頻率分布直方圖計(jì)算隨機(jī)變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【詳解】(1)記每個(gè)農(nóng)戶(hù)的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過(guò)1000元的農(nóng)戶(hù)共有(0.00009+0.00003+0.00003)×2000×50=15(戶(hù)),損失超過(guò)8000元的農(nóng)戶(hù)共有0.00003×2000×50=3(戶(hù)),隨機(jī)抽取2戶(hù),則X的可能取值為0,1,2;計(jì)算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學(xué)期望為E(X)=0×+1×+2×=.【點(diǎn)睛】本題考查了頻率分布直方圖與離散型隨機(jī)變量的分布列與數(shù)學(xué)期望計(jì)算問(wèn)題,屬于中檔題.19、(Ⅰ);(Ⅱ)詳見(jiàn)解析.【解析】

(Ⅰ)把點(diǎn)代入橢圓方程,結(jié)合離心率得到關(guān)于的方程,解方程即可;(Ⅱ)聯(lián)立直線(xiàn)與橢圓方程得到關(guān)于的一元二次方程,利用韋達(dá)定理和中垂線(xiàn)的定義求出線(xiàn)段的中垂線(xiàn)方程即可證明.【詳解】(Ⅰ)由已知橢圓過(guò)點(diǎn)得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達(dá)定理可得,,設(shè)的中點(diǎn)為,得,即,,的中垂線(xiàn)方程為,即,故得中垂線(xiàn)恒過(guò)點(diǎn).【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線(xiàn)與橢圓的位置關(guān)系及橢圓中的定值問(wèn)題;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;正確求出橢圓方程和利用中垂線(xiàn)的定義正確表示出中垂線(xiàn)方程是求解本題的關(guān)鍵;屬于中檔題.20、(1);(2).【解析】

(1)對(duì)分三種情況討論,分別去掉絕對(duì)值符號(hào),然后求解不等式組,再求并集即可得結(jié)果;(2).作出函數(shù)的圖象,當(dāng)直線(xiàn)與函數(shù)的圖象有三個(gè)公共點(diǎn)時(shí),方程有三個(gè)解,由圖可得結(jié)果.【詳解】(1)不等式,即為.當(dāng)時(shí),即化為,得,此時(shí)不等式的解集為,當(dāng)時(shí),即化為,解得,此時(shí)不等式的解集為.綜上,不等式的解集為.(2)即.作出函數(shù)的圖象如圖所示,當(dāng)直線(xiàn)與函數(shù)的圖象有三個(gè)公共點(diǎn)時(shí),方程有三個(gè)解,所以.所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】絕對(duì)值不等式的解法:法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類(lèi)討論的思想;法三:通過(guò)構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.21、(1)的極坐標(biāo)方程為;的極坐標(biāo)方程為:(2)【解析】

(1)根據(jù),代入即可轉(zhuǎn)化.(2)由:,可得,代入與的極坐標(biāo)方程求出,從而可得,再利用二倍角公式、輔助角公式,借助三角函數(shù)的性質(zhì)即可求解.【詳解】(1):,,的極坐標(biāo)方程為:,,的極坐標(biāo)方程為:,(2):,則(為銳角),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論