![第七章 三角形 全章教案_第1頁](http://file4.renrendoc.com/view3/M03/18/32/wKhkFmZF5EaAL9t-AAJaSV1b1B0113.jpg)
![第七章 三角形 全章教案_第2頁](http://file4.renrendoc.com/view3/M03/18/32/wKhkFmZF5EaAL9t-AAJaSV1b1B01132.jpg)
![第七章 三角形 全章教案_第3頁](http://file4.renrendoc.com/view3/M03/18/32/wKhkFmZF5EaAL9t-AAJaSV1b1B01133.jpg)
![第七章 三角形 全章教案_第4頁](http://file4.renrendoc.com/view3/M03/18/32/wKhkFmZF5EaAL9t-AAJaSV1b1B01134.jpg)
![第七章 三角形 全章教案_第5頁](http://file4.renrendoc.com/view3/M03/18/32/wKhkFmZF5EaAL9t-AAJaSV1b1B01135.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第七章三角形教材內(nèi)容本章主要內(nèi)容有三角形的有關(guān)線段、角,多邊形及內(nèi)角和,鑲嵌等。三角形的高、中線和角平分線是三角形中的主要線段,與三角形有關(guān)的角有內(nèi)角、外角。教材通過實(shí)驗(yàn)讓學(xué)生了解三角形的穩(wěn)定性,在知道三角形的內(nèi)角和等于1800的基礎(chǔ)上,進(jìn)行推理論證,從而得出三角形外角的性質(zhì)。接著由推廣三角形的有關(guān)概念,介紹了多邊形的有關(guān)概念,利用三角形的有關(guān)性質(zhì)研究了多邊形的內(nèi)角和、外角和公式。這些知識(shí)加深了學(xué)生對(duì)三角形的認(rèn)識(shí),既是學(xué)習(xí)特殊三角形的基礎(chǔ),也是研究其它圖形的基礎(chǔ)。最后結(jié)合實(shí)例研究了鑲嵌的有關(guān)問題,體現(xiàn)了多邊形內(nèi)角和公式在實(shí)際生活中的應(yīng)用.教學(xué)目標(biāo)〔知識(shí)與技能〕1、理解三角形及有關(guān)概念,會(huì)畫任意三角形的高、中線、角平分線;2、了解三角形的穩(wěn)定性,理解三角形兩邊的和大于第三邊,會(huì)根據(jù)三條線段的長度判斷它們能否構(gòu)成三角形;3、會(huì)證明三角形內(nèi)角和等于1800,了解三角形外角的性質(zhì)。4、了解多邊形的有關(guān)概念,會(huì)運(yùn)用多邊形的內(nèi)角和與外角和公式解決問題。5、理解平面鑲嵌,知道任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面,并能運(yùn)用它們進(jìn)行簡單的平面鑲嵌設(shè)計(jì)。〔過程與方法〕1、在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力?!睬楦?、態(tài)度與價(jià)值觀〕1、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決一些簡單的實(shí)際問題,增強(qiáng)應(yīng)用意識(shí);3、使學(xué)生進(jìn)一步形成數(shù)學(xué)來源于實(shí)踐,反過來又服務(wù)于實(shí)踐的辯證唯物主義觀點(diǎn)。重點(diǎn)難點(diǎn)三角形三邊關(guān)系、內(nèi)角和,多邊形的外角和與內(nèi)角和公式,鑲嵌是重點(diǎn);三角形內(nèi)角和等于1800的證明,根據(jù)三條線段的長度判斷它們能否構(gòu)成三角形及簡單的平面鑲嵌設(shè)計(jì)是難點(diǎn)。課時(shí)分配7.1與三角形有關(guān)的線段………2課時(shí)7.2與三角形有關(guān)的角…………2課時(shí)7.3多邊形及其內(nèi)角和…………2課時(shí)7.4課題學(xué)習(xí)鑲嵌……………1課時(shí)本章小結(jié)…………2課時(shí)7.1.1三角形的邊[教學(xué)目標(biāo)]1、了解三角形的意義,認(rèn)識(shí)三角形的邊、內(nèi)角、頂點(diǎn),能用符號(hào)語言表示三角形;2、理解三角形三邊不等的關(guān)系,會(huì)判斷三條線段能否構(gòu)成一個(gè)三角形,并能運(yùn)用它解決有關(guān)的問題.[重點(diǎn)難點(diǎn)]三角形的有關(guān)概念和符號(hào)表示,三角形三邊間的不等關(guān)系是重點(diǎn);用三角形三邊不等關(guān)系判定三條線段可否組成三角形是難點(diǎn)。[教學(xué)過程]一、情景導(dǎo)入三角形是一種最常見的幾何圖形,[投影1-6]如古埃及金字塔,香港中銀大廈,交通標(biāo)志,等等,處處都有三角形的形象。那么什么叫做三角形呢?二、三角形及有關(guān)概念不在一條直線上的三條線段首尾順次相接組成的圖形叫做三角形。注意:三條線段必須①不在一條直線上,②首尾順次相接。aabc組成三角形的線段叫做三角形的邊,相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡稱角,相鄰兩邊的公共端點(diǎn)是三角形的頂點(diǎn)。三角形ABC用符號(hào)表示為△ABC。三角形ABC的頂點(diǎn)C所對(duì)的邊AB可用c表示,頂點(diǎn)B所對(duì)的邊AC可用b表示,頂點(diǎn)A所對(duì)的邊BC可用a表示.三、三角形三邊的不等關(guān)系探究:[投影7]任意畫一個(gè)△ABC,假設(shè)有一只小蟲要從B點(diǎn)出發(fā),沿三角形的邊爬到C,它有幾種路線可以選擇?各條路線的長一樣嗎?為什么?有兩條路線:(1)從B→C,(2)從B→A→C;不一樣,AB+AC>BC①;因?yàn)閮牲c(diǎn)之間線段最短。同樣地有AC+BC>AB②AB+BC>AC③由式子①②③我們可以知道什么?三角形的任意兩邊之和大于第三邊.四、三角形的分類我們知道,三角形按角可分為銳角三角形、鈍角三角形、直角三角形,我們把銳角三角形、鈍角三角形統(tǒng)稱為斜三角形。按角分類:三角形直角三角形斜三角形銳角三角形鈍角三角形那么三角形按邊如何進(jìn)行分類呢?請(qǐng)你按“有幾條邊相等”將三角形分類。三邊都相等的三角形叫做等邊三角形;有兩條邊相等的三角形叫做等腰三角形;三邊都不相等的三角形叫做不等邊三角形。腰腰腰底邊頂角底角底角顯然,等邊三角形是特殊的等腰三角形。按邊分類:三角形不等邊三角形等腰三角形底和腰不等的等腰三角形等邊三角形 五、例題例用一條長為18㎝的細(xì)繩圍成一個(gè)等腰三角形。(1)如果腰長是底邊的2倍,那么各邊的長是多少?(2)能圍成有一邊長為4㎝的等腰三角形嗎?為什么?分析:(1)等腰三角形三邊的長是多少?若設(shè)底邊長為x㎝,則腰長是多少?(2)“邊長為4㎝”是什么意思?解:(1)設(shè)底邊長為x㎝,則腰長2x㎝。x+2x+2x=18解得x=3.6所以,三邊長分別為3.6㎝,7.2㎝,7.2㎝.(2)如果長為4㎝的邊為底邊,設(shè)腰長為x㎝,則4+2x=18解得x=7如果長為4㎝的邊為腰,設(shè)底邊長為x㎝,則2×4+x=18解得x=10因?yàn)?+4<10,出現(xiàn)兩邊的和小于第三邊的情況,所以不能圍成腰長是4㎝的等腰三角形。由以上討論可知,可以圍成底邊長是4㎝的等腰三角形。五、課堂練習(xí)課本65面練習(xí)1、2題。六、課堂小結(jié)1、三角形及有關(guān)概念;2、三角形的分類;3、三角形三邊的不等關(guān)系及應(yīng)用。作業(yè):課本69面1、2、6;70面7題。7.1.2三角形的高、中線與角平分線〔教學(xué)目標(biāo)〕1、經(jīng)歷畫圖的過程,認(rèn)識(shí)三角形的高、中線與角平分線;2、會(huì)畫三角形的高、中線與角平分線;3、了解三角形的三條高所在的直線,三條中線,三條角平分線分別交于一點(diǎn).〔重點(diǎn)難點(diǎn)〕三角形的高、中線與角平分線是重點(diǎn);三角形的角平分線與角的平分線的區(qū)別,畫鈍角三角形的高是難點(diǎn).〔教學(xué)過程〕一、導(dǎo)入新課我們已經(jīng)知道什么是三角形,也學(xué)過三角形的高。三角形的主要線段除高外,還有中線和角平分線值得我們研究。二、三角形的高請(qǐng)你在圖中畫出△ABC的一條高并說說你畫法。從△ABC的頂點(diǎn)A向它所對(duì)的邊BC所在的直線畫垂線,垂足為D,所得線段AD叫做△ABC的邊BC上的高,表示為AD⊥BC于點(diǎn)D。注意:高與垂線不同,高是線段,垂線是直線。請(qǐng)你再畫出這個(gè)三角形AB、AC邊上的高,看看有什么發(fā)現(xiàn)?三角形的三條高相交于一點(diǎn)。如果△ABC是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?現(xiàn)在我們來畫鈍角三角形三邊上的高,如圖。AABCODEF顯然,上面的結(jié)論成立。請(qǐng)你畫一個(gè)直角三角形,再畫出它三邊上的高。上面的結(jié)論還成立。三、三角形的中線如圖,我們把連結(jié)△ABC的頂點(diǎn)A和它的對(duì)邊BC的中點(diǎn)D,所得線段AD叫做△ABC的邊BC上的中線,表示為BD=DC或BD=DC=1/2BC或2BD=2DC=BC.請(qǐng)你在圖中畫出△ABC的另兩條邊上的中線,看看有什么發(fā)現(xiàn)?三角的三條中線相交于一點(diǎn)。如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請(qǐng)畫圖回答。上面的結(jié)論還成立。四、三角形的角平分線如圖,畫∠A的平分線AD,交∠A所對(duì)的邊BC于點(diǎn)D,所得線段AD叫做△ABC的角平分線,表示為∠BAD=∠CAD或∠BAD=∠CAD=1/2∠BAC或2∠BAD=2∠CAD=∠BAC。思考:三角形的角平分線與角的平分線是一樣的嗎?三角形的角平分線是線段,而角的平分線是射線,是不一樣的。請(qǐng)你在圖中再畫出另兩個(gè)角的平分線,看看有什么發(fā)現(xiàn)?三角形三個(gè)角的平分線相交于一點(diǎn)。如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請(qǐng)畫圖回答。上面的結(jié)論還成立。想一想:三角形的三條高、三條中線、三條角平分線的交點(diǎn)有什么不同?三角形的三條中線的交點(diǎn)、三條角平分線的交點(diǎn)在三角形的內(nèi)部,而銳三角形的三條高的交點(diǎn)在三角形的內(nèi)部,直角三角形三條高的交戰(zhàn)在角直角頂點(diǎn),鈍角三角形的三條高的交點(diǎn)在三角形的外部。五、課堂練習(xí)課本66面練習(xí)1、2題。六、課堂小結(jié)1、三角形的高、中線、角平分線的概念和畫法。2、三角形的三條高、三條中線、三條角平分線及交點(diǎn)的位置規(guī)律。作業(yè):課本69面3、4;70面8、9題。7.1.3三角形的穩(wěn)定性[教學(xué)目標(biāo)]1、知道三角形具有穩(wěn)定性,四邊形沒有穩(wěn)定性;2、了解三角形的穩(wěn)定性在生產(chǎn)、生活中的應(yīng)用。[重點(diǎn)難點(diǎn)]三角形穩(wěn)定性及應(yīng)用。[教學(xué)過程]一、情景導(dǎo)入蓋房子時(shí),在窗框未安裝之前,木工師傅常常先在窗框上斜釘一根木條,為什么要這樣做呢?二、三角形的穩(wěn)定性〔實(shí)驗(yàn)〕1、把三根木條用釘子釘成一個(gè)三角形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?(2)(2)不會(huì)改變。2、把四根木條用釘子釘成一個(gè)四邊形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?會(huì)改變。3、在四邊形的木架上再釘一根木條,將它的一對(duì)頂點(diǎn)連接起來,然后扭動(dòng)它,它的形狀會(huì)改變嗎?不會(huì)改變。從上面的實(shí)驗(yàn)中,你能得出什么結(jié)論?三角形具有穩(wěn)定性,而四邊形不具有穩(wěn)定性。三、三角形穩(wěn)定性和四邊形不穩(wěn)定的應(yīng)用三角形具有穩(wěn)定性固然好,四邊形不具有穩(wěn)定性也未必不好,它們?cè)谏a(chǎn)和生活中都有廣泛的應(yīng)用。如:鋼架橋、屋頂鋼架和起重機(jī)都是利用三角形的穩(wěn)定性,活動(dòng)掛架則是利用四邊形的不穩(wěn)定性。你還能舉出一些例子嗎?
四、課堂練習(xí)1、下列圖形中具有穩(wěn)定性的是()A正方形B長方形C直角三角形D平行四邊形2、要使下列木架穩(wěn)定各至少需要多少根木棍?3、課本68面練習(xí)。作業(yè):69面5;70面10題。7.2.1三角形的內(nèi)角[教學(xué)目標(biāo)]掌握三角形內(nèi)角和定理。[重點(diǎn)難點(diǎn)]三角形內(nèi)角和定理是重點(diǎn);三角形內(nèi)角和定理的證明是難點(diǎn)。[教學(xué)過程]一、導(dǎo)入新課我們?cè)谛W(xué)就知道三角形內(nèi)角和等于1800,這個(gè)結(jié)論是通過實(shí)驗(yàn)得到的,這個(gè)命題是不是真命題還需要證明,怎樣證明呢?二、三角形內(nèi)角和的證明回顧我們小學(xué)做過的實(shí)驗(yàn),你是怎樣操作的?把一個(gè)三角形的兩個(gè)角剪下拼在第三個(gè)角的頂點(diǎn)處,用量角器量出∠BCD的度數(shù),可得到∠A+∠B+∠ACB=1800。[投影1]圖1想一想,還可以怎樣拼?①剪下∠A,按圖(2)拼在一起,可得到∠A+∠B+∠ACB=1800。圖2②把和剪下按圖(3)拼在一起,可得到∠A+∠B+∠ACB=1800。如果把上面移動(dòng)的角在圖上進(jìn)行轉(zhuǎn)移,由圖1你能想到證明三角形內(nèi)角和等于1800的方法嗎?已知△ABC,求證:∠A+∠B+∠C=1800。證明一過點(diǎn)C作CM∥AB,則∠A=∠ACM,∠B=∠DCM,又∠ACB+∠ACM+∠DCM=1800∴∠A+∠B+∠ACB=1800。即:三角形的內(nèi)角和等于1800。由圖2、圖3你又能想到什么證明方法?請(qǐng)說說證明過程。三、例題例如圖,C島在A島的北偏東500方向,B島在A島的北偏東800方向,C島在B島的北偏西400方向,從C島看A、B兩島的視角∠ACB是多少度?分析:怎樣能求出∠ACB的度數(shù)?根據(jù)三角形內(nèi)角和定理,只需求出∠CAB和∠CBA的度數(shù)即可?!螩AB等于多少度?怎樣求∠CBA的度數(shù)?解:∠CBA=∠BAD-∠CAD=800-500=300∵AD∥BE∴∠BAD+∠ABE=1800∴∠ABE=1800-∠BAD=1800-800=1000∴∠ABC=∠ABE-∠EBC=1000-400=600∴∠ACB=1800-∠ABC-∠CAB=1800-600-300=900答:從C島看AB兩島的視角∠ACB=1800是900。四、課堂練習(xí)課本74面1、2題。作業(yè):76面1、3、4;77面7、9題。第七章復(fù)習(xí)一(7.1-7.2.1)一、雙基回顧1、三角形:由的三條直線所組成的圖形,叫做三角形。〔1〕圖中有個(gè)三角形,用符號(hào)表示為。AADCBE2、三角形的分類:(1)按角分類:三角形(2)按邊分類: 三角形〔2〕三角形中最大的角是700,那么這個(gè)三角形是三角形。3、三角形三角的關(guān)系:三角形三個(gè)內(nèi)角的和是。4、三角形的三邊關(guān)系:三角形的兩邊之和第三邊,兩邊之差第三邊?!?〕一個(gè)三角形的兩邊長分別是3和8,則第三邊的范圍是.5、三角形的高、中線、角平分線從三角形的向它的作垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高注意:三角形的高與垂線不同;三角形的高可能在三角形內(nèi)部,可能在三角形的邊上,可能在三角形的外部。在三角形中,連接與它的線段,叫做三角形的中線.在三角形中,一個(gè)內(nèi)角的角平分線與它的對(duì)邊相交,與之間的線段,叫做三角形的角平分線。注意:三角形的角平分線與角的平分線不同.〔4〕如圖,以AE為高的三角形是.AABCDE6、三角形的三條高所在的直線相交于一點(diǎn)。這點(diǎn)可能在三角形的,可能在三角形的,可能在三角形的。三角形的三條中線相交于一點(diǎn)。這點(diǎn)在三角形的.三角形的三條角平分線相交于一點(diǎn)。這點(diǎn)在三角形的?!?〕如果一個(gè)三角形的三條高的交點(diǎn)恰是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是[]A.銳角三角形B.直角三角形C.鈍角三角形D.銳角三角形7、三角形的穩(wěn)定性:具有穩(wěn)定性,具有不穩(wěn)定性.〔6〕有些窗戶是可以向外推開的,當(dāng)我們把窗戶推開后,就順手把風(fēng)鉤勾上,為什么這樣做呢?我們的校門是鐵柵欄,為什么既能拉開,又能推攏去呢?二、例題導(dǎo)引例1兩根木棒長分別為3厘米和6厘米,要截取其中一根木棒將它釘成一個(gè)三角形,如果要求三邊長為整數(shù),那么截取的情況有幾種?例2如圖,已知AD、AE分別是△ABC的高和中線,AB=6厘米,AC=8厘米,BC=10厘米,∠CAB=900,試求(1)AD的長;(2)△ABE的面積;(3)△ACE與△ABE的周長的差。AABCDE例3如圖,BE平分∠ABC,CD平分∠ACB,∠A=500,求∠BOC的度數(shù)。OOABCDE12三、練習(xí)升華夯實(shí)基礎(chǔ)1、有下列長度的三條線段,能組成三角形的是()A.1、2、3B.1、2、4C.2、3、4D.2、32、如圖,工人師傅把新做好的門框上方釘兩根木條后存放起來,這是防止,根據(jù)是.EABCEABCDEABCD2題3題4題3、圖中共有個(gè)三角形。4、如圖,AB⊥BD于B,DC⊥AC于C,AC與BD交于點(diǎn)E,那么△ADE的邊DE上的高為,AE上的高為.5、下列說法正確的是〔〕A、直角三角形只有一條高B、三角形的三條中線相交于一點(diǎn)C、三角形的三條高相交于一點(diǎn)D、三角形的角平分線是射線6、如果三角形的三個(gè)內(nèi)角的度數(shù)比是2:3:4,則它是()A.銳角三角形B.鈍角三角形C.直角三角形D.鈍角或直角三角形7、現(xiàn)有兩根木棒,它們的長度分別為20cm和30cm,若不改變木棒的長度,要釘成一個(gè)三角形木架,應(yīng)在下列四根木棒中選取〔〕的木棒A.10cmB.20cmC.50cmD.60cm8、在△ABC中,AB=AC,AD是中線,△ABC的周長為34cm,△ABD的周長為30cm,求AD的長.9、在△ABC中,高CE,角平分線BD交于點(diǎn)O,∠ECB=50°,求∠BOC的度數(shù).能力提高10、在△ABC中,若∠A+∠B=∠C,則此三角形為_______三角形.11、任何一個(gè)三角形的三個(gè)角中至少有〔〕A、一個(gè)銳角B、兩個(gè)銳角C、一個(gè)直角D、一個(gè)鈍角12、已知等腰三角形的兩邊長分別為3和6,則它的周長為〔〕A.13B.15C.14D.13或1513、若等腰三角形的腰長為6,則它的底邊長a的取值范圍是________;若等腰三角形的底邊長為4,則它的腰長b的取值范圍是_______.14、在△ABC中,AD是BC上的中線,且S△ACD=12,S△ABC=.15、在△ABC中,AB=AC,AC邊上的中線BD把△ABC的周長分成15和6兩部分,求這個(gè)三角形的腰長及底邊長。16、如圖,△ABC中,AD、AE分別是△ABC的高和角平分線,∠C=600,∠B=280,求∠DAE的度數(shù)。AABCDE探究創(chuàng)新17、如圖,線段、相交于點(diǎn),能否確定與的大小,并加以說明.7.2.2三角形的外角[教學(xué)目標(biāo)]1、理解三角形的外角;2、掌握三角形外角的性質(zhì),能利用三角形外角的性質(zhì)解決問題。[重點(diǎn)難點(diǎn)]三角形的外角和三角形外角的性質(zhì)是重點(diǎn);理解三角形的外角是難點(diǎn)。[教學(xué)過程]一、導(dǎo)入新課〔投影1〕如圖,△ABC的三個(gè)內(nèi)角是什么?它們有什么關(guān)系?是∠A、∠B、∠C,它們的和是1800。若延長BC至D,則∠ACD是什么角?這個(gè)角與△ABC的三個(gè)內(nèi)角有什么關(guān)系?二、三角形外角的概念∠ACD叫做△ABC的外角。也就是,三角形一邊與另一邊的延長線組成的角,叫做三角形的外角。想一想,三角形的外角共有幾個(gè)?共有六個(gè)。注意:每個(gè)頂點(diǎn)處有兩個(gè)外角,它們是對(duì)頂角。研究與三角形外角有關(guān)的問題時(shí),通常每個(gè)頂點(diǎn)處取一個(gè)外角.三、三角形外角的性質(zhì)容易知道,三角形的外角∠ACD與相鄰的內(nèi)角∠ACB是鄰補(bǔ)角,那與另外兩個(gè)角有怎樣的數(shù)量關(guān)系呢?〔投影2〕如圖,這是我們證明三角形內(nèi)角和定理時(shí)畫的輔助線,你能就此圖說明∠ACD與∠A、∠B的關(guān)系嗎?∵CE∥AB,∴∠A=∠1,∠B=∠2又∠ACD=∠1+∠2∴∠ACD=∠A+∠B你能用文字語言敘述這個(gè)結(jié)論嗎?三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和。由加數(shù)與和的關(guān)系你還能知道什么?三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角。即,。四、例題〔投影3〕例如圖,∠1、∠2、∠3是三角形ABC的三個(gè)外角,它們的和是多少?分析:∠1與∠BAC、∠2與∠ABC、∠3與∠ACB有什么關(guān)系?∠BAC、ABC、∠ACB有什么關(guān)系?解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400又∠BAC+∠ABC+∠ACB=1800∴∠1+∠2+∠3==3600。你能用語言敘述本例的結(jié)論嗎?三角形外角的和等于3600。五、課堂練習(xí)課本75面練習(xí);六、課堂小結(jié)1、什么是三角形外角?2、三角形的外角有哪些性質(zhì)?作業(yè):課本76面1、2、5、6;77面8題。7.3.1多邊形[教學(xué)目標(biāo)]1、了解多邊形及有關(guān)概念,理解正多邊形的概念.2、區(qū)別凸多邊形與凹多邊形.[重點(diǎn)難點(diǎn)]多邊形及有關(guān)概念、正多邊形的概念是重點(diǎn);區(qū)別凸多邊形與凹多邊形是難點(diǎn)。[教學(xué)過程]一、情景導(dǎo)入[投影1]看下面的圖片,你能從中找出由一些線段圍成的圖形嗎?二、多邊形及有關(guān)概念這些圖形有什么特點(diǎn)?由幾條線段組成;它們不在同一條直線上;首尾順次相接.這種在平面內(nèi),由一些不在同一條直線上的線段首尾順次相接組成的圖形叫做多邊形。多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形……、n邊形。這就是說,一個(gè)多邊形由幾條線段組成,就叫做幾邊形,三角形是最簡單的多邊形。與三角形類似地,多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,如圖中的∠A、∠B、∠C、∠D、∠E。多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.如圖中的∠1是五邊形ABCDE的一個(gè)外角。[投影2]連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.四邊形有幾條對(duì)角線?五邊形有幾條對(duì)角線?畫圖看看。你能猜想n邊形有多少條對(duì)角線嗎?說說你的想法。n邊形有1/2n(n-3)條對(duì)角線。因?yàn)閺膎邊形的一個(gè)頂點(diǎn)可以引n-3條對(duì)角線,n個(gè)頂點(diǎn)共引n(n-3)條對(duì)角線,又由于連接任意兩個(gè)頂點(diǎn)的兩條對(duì)角線是相同的,所以,n邊形有1/2n(n-3)條對(duì)角線。三、凸多邊形和凹多邊形[投影3]如圖,下面的兩個(gè)多邊形有什么不同?在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形。注意:今后我們討論的多邊形指的都是凸多邊形.四、正多邊形的概念我們知道,等邊三角形、正方形的各個(gè)角都相等,各條邊都相等,像這樣各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。[投影4]下面是正多邊形的一些例子。五、課堂練習(xí)課本81面練習(xí)1。2、有五個(gè)人在告別的時(shí)候相互各握了一次手,他們共握了多少次手?你能找到一個(gè)幾何模型來說明嗎?六、課堂小結(jié)1、多邊形及有關(guān)概念。2、區(qū)別凸多邊形和凹多邊形。3、正多邊形的概念。4、n邊形對(duì)角線有1/2n(n-3)條。作業(yè):課本84面1。7.3.2多邊形的內(nèi)角和[教學(xué)目標(biāo)]1、了解多邊形的內(nèi)角、外角等概念;2、能通過不同方法探索多邊形的內(nèi)角和與外角和公式,并會(huì)應(yīng)用它們進(jìn)行有關(guān)計(jì)算.[重點(diǎn)難點(diǎn)]多邊形的內(nèi)角和與多邊形的外角和公式是重點(diǎn);多邊形的內(nèi)角和定理的推導(dǎo)是難點(diǎn)。[教學(xué)過程]一、復(fù)習(xí)導(dǎo)入我們已經(jīng)證明了三角形的內(nèi)角和為180°,在小學(xué)我們用量角器量過四邊形的內(nèi)角的度數(shù),知道四邊形內(nèi)角的和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?二、多邊形的內(nèi)角和〔投影1〕如圖,從四邊形的一個(gè)頂點(diǎn)出發(fā)可以引幾條對(duì)角線?它們將四邊形分成幾個(gè)三角形?那么四邊形的內(nèi)角和等于多少度?AABCD可以引一條對(duì)角線;它將四邊形分成兩個(gè)三角形;因此,四邊形的內(nèi)角和=△ABD的內(nèi)角和+△BDC的內(nèi)角和=2×180°=360°。類似地,你能知道五邊形、六邊形……n邊形的內(nèi)角和是多少度嗎?〔投影2〕觀察下面的圖形,填空:五邊形六邊形從五邊形一個(gè)頂點(diǎn)出發(fā)可以引對(duì)角線,它們將五邊形分成三角形,五邊形的內(nèi)角和等于;從六邊形一個(gè)頂點(diǎn)出發(fā)可以引對(duì)角線,它們將六邊形分成三角形,六邊形的內(nèi)角和等于;〔投影3〕從n邊形一個(gè)頂點(diǎn)出發(fā),可以引對(duì)角線,它們將n邊形分成三角形,n邊形的內(nèi)角和等于。n邊形的內(nèi)角和等于(n一2)·180°.從上面的討論我們知道,求n邊形的內(nèi)角和可以將n邊形分成若干個(gè)三角形來求。現(xiàn)在以五邊形為例,你還有其它的分法嗎?分法一〔投影3〕如圖1,在五邊形ABCDE內(nèi)任取一點(diǎn)O,連結(jié)OA、OB、OC、OD、OE,則得五個(gè)三角形?!辔暹呅蔚膬?nèi)角和為5×180°一2×180°=(5—2)×180°=540°。圖1圖2分法二〔投影4〕如圖2,在邊AB上取一點(diǎn)O,連OE、OD、OC,則可以(5-1)個(gè)三角形。∴五邊形的內(nèi)角和為(5—1)×180°一180°=(5—2)×180°如果把五邊形換成n邊形,用同樣的方法可以得到n邊形內(nèi)角和=(n一2)×180°.三、例題〔投影6〕例1如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系?如圖,已知四邊形ABCD中,∠A+∠C=180°,求∠B與∠D的關(guān)系.分析:∠A、∠B、∠C、∠D有什么關(guān)系?解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°又∠A+∠C=180°∴∠B+∠D=360°-(∠A+∠C)=180°這就是說,如果四邊形一組對(duì)角互補(bǔ),那么另一組對(duì)角也互補(bǔ).〔投影7〕例2如圖,在六邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少?如圖,已知∠1,∠2,∠3,∠4,∠5,∠6分別為六邊形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.分析:多邊形的一個(gè)外角同與它相鄰的內(nèi)角有什么關(guān)系?六邊形的內(nèi)角和是多少度?解:∵∠1+∠BAF=180°∠2+∠ABC=180°∠3+∠BAD=180°∠4+∠CDE=180°∠5+∠DEF=180°∠6+∠EFA=180°∴∠1+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°又∠1+∠2+∠3+∠4+∠5+∠6=4×180°∴∠BAF+∠ABC+∠BAD+∠CDE+∠DEF+∠EFA=6×180°-4×180°=360°這就是說,六邊形形的外角和為360°。如果把六邊形換成n邊形可以得到同樣的結(jié)果:n邊形的外角和等于360°。對(duì)此,我們也可以這樣來理解。〔投影8〕如圖,從多邊形的一個(gè)頂點(diǎn)A出發(fā),沿多邊形各邊走過各頂點(diǎn),再回到A點(diǎn),然后轉(zhuǎn)向出發(fā)時(shí)的方向,在行程中所轉(zhuǎn)的各個(gè)角的和就是多邊形的外角和,由于走了一周,所得的各個(gè)角的和等于一個(gè)周角,所以多邊形的外角和等于360°.四、課堂練習(xí)課本83-84面1、2、3題。五、課堂小結(jié)n邊形的內(nèi)角和是多少度?n邊形的外角和是多少度?作業(yè):84面2、3;85面4、5、6、7。7.4課題學(xué)習(xí):鑲嵌[教學(xué)目標(biāo)]1、知道能單獨(dú)進(jìn)行平面鑲嵌的只有三角形、四邊形或正六邊形;2、了解平面鑲嵌的條件,能用多邊形進(jìn)行簡單的鑲嵌設(shè)計(jì)。[重點(diǎn)難點(diǎn)]平面鑲嵌的條件和簡單的鑲嵌設(shè)計(jì)是重點(diǎn);用兩種或三種多邊形進(jìn)行平面鑲嵌是難點(diǎn)。[教學(xué)過程]一、情景導(dǎo)入回想一下,你家屋內(nèi)鋪設(shè)的地板是什么圖形?街道兩邊的便道是用什么形狀的磚鋪設(shè)的?為什么這樣的磚能鋪成無縫隙的地面呢?二、平面鑲嵌及條件下面的圖形是由一些地板磚鋪成的,看看它們有什么特點(diǎn)?[投影1]都是一些多邊形;相互不重疊;把一部分平面完全覆蓋。用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,通常把這類問題叫做平面鑲嵌(或用多邊形覆蓋平面)的問題怎樣的多邊形才能進(jìn)行平面鑲嵌呢?任意剪一些形狀、大小相同的三角形紙板,拼一拼,看它們能否鑲嵌成平面圖案。[投影2]能鑲嵌成平面圖案。任意剪一些形狀、大小相同的四邊形紙板,拼一拼,看它們能否鑲嵌成平面圖案。[投影3]能鑲嵌成平面圖案。任意剪一些形狀、大小相同的五邊形紙板,拼一拼,看它們能否鑲嵌成平面圖案。[投影4]不能鑲嵌成平面圖案。任意剪一些形狀、大小相同的正六邊形紙板,拼一拼,看它們能否鑲嵌成平面圖案。[投影5]能鑲嵌成平面圖案。為什么有的多邊形可以鑲嵌成平面圖案,有的又不能呢?仔細(xì)觀察我們鑲嵌成的平面圖案,在拼接的同一個(gè)頂點(diǎn)處各個(gè)角有什么關(guān)系?同一個(gè)頂點(diǎn)處的各個(gè)角的和等于360°,且相鄰的多邊形有公共邊.。也就是說,只要滿足這條件就能進(jìn)行平面鑲嵌。正五邊形在同一個(gè)頂點(diǎn)處各角的和不能等于360°,所以正五邊形不能進(jìn)行平面鑲嵌。同樣的道理,其它多邊形也不能單獨(dú)進(jìn)行平面鑲嵌。因此,能單獨(dú)進(jìn)行平面鑲嵌的只有三角形、四邊形和正六邊形。三、平面鑲嵌的設(shè)計(jì)既然只要滿足“同一個(gè)頂點(diǎn)處的各個(gè)角的和等于360°”就能進(jìn)行平面鑲嵌,那么多種多邊形只要滿足這個(gè)條件也應(yīng)該能進(jìn)行平面鑲嵌。試一試,哪些多邊形可以在一起進(jìn)行平面鑲嵌?1、正三角形和正方形[投影6]①①2、正三角形與正六邊形[投影7]3、正八邊形與正方形[投影8]4、正方形、正五邊形和正十二邊形[投影9]除此之外,還有很多,大家可以在課外搜集一些其他用多邊形鑲嵌的平面圖案,或者設(shè)計(jì)一些地板的平面鑲嵌圖,相互交流一下。四、課堂練習(xí)1.能夠用一種正多邊形鋪滿地面的是____。A、正五邊形B、正六邊形C、正七邊形D、正八邊形2.如果用正三角形進(jìn)行鑲嵌,那么在每個(gè)頂點(diǎn)的周圍有__個(gè)正三角形。3.如果用正三角形和正六邊形進(jìn)行鑲嵌,那么在每個(gè)頂點(diǎn)的周圍有____個(gè)正三角形和____個(gè)正六邊形或____個(gè)正三角形和____個(gè)正六邊形。五、課堂小結(jié)1、能單獨(dú)進(jìn)行平面鑲嵌的多邊形有哪幾種?2、平面鑲嵌的條件是什么?3、可以用一種多邊形進(jìn)行平面鑲嵌,也可以用多種多邊形進(jìn)行平面鑲嵌。平面鑲嵌在生活中有著廣泛的應(yīng)用。第七章復(fù)習(xí)二(7.2.2-7.4)一、雙基回顧1、三角形的外角:三角形與另組成的角叫做三角形的外角.如圖1,∠是△ABC的一個(gè)外角.x145x1450圖1圖22、三角形外角的性質(zhì)(1)三角形的一個(gè)外角等于兩個(gè)內(nèi)角和.注意:三角形的外角和等于3600.〔1〕如圖2,∠=450,則x=.(2)三角形的一個(gè)外角與它不相鄰的任何一個(gè)內(nèi)角.〔2〕如圖,△ABC中,∠1與∠A有什么關(guān)系?為什么?ABABC123、多邊形和正多邊形在平面內(nèi),由相接組成的圖形叫做多邊形。注意:多邊形分為凸多邊形和凹多邊形,我們現(xiàn)在只研究凸多邊形.各相等,各相等的多邊形叫做正多邊形。4、對(duì)角線連接多邊形線段叫做對(duì)角線。〔3〕從九邊形的一個(gè)頂點(diǎn)作對(duì)角線,能作條,可把九邊形分成個(gè)三角形。5、多邊形的內(nèi)角和、外角和n邊形的內(nèi)角和是;n邊形的外角和是.〔4〕一個(gè)多邊形的內(nèi)角和等于它的外角和,這個(gè)多邊形是邊形。6、平面鑲嵌能單獨(dú)鑲嵌的圖形有。〔5〕正五邊形不能單獨(dú)鑲嵌的原因是什么?用多種正多邊形鑲嵌必須滿足條件:幾種多邊形在的內(nèi)角的和為.〔6〕某公園便道用三種不同的正多邊形地磚鑲嵌,已選好了正十二邊形和正方形兩種,還需選用.二、例題導(dǎo)引例1(1)已知正多邊形的一個(gè)內(nèi)角是150°,求這個(gè)多邊形對(duì)角線的條數(shù)?(2)n邊形的邊數(shù)每增加1條,其內(nèi)角和增加多少度?例2如圖,一個(gè)任意五角星的五個(gè)角的和是多少?例3一個(gè)零件形狀如圖所示,按規(guī)定∠BAC=900,∠B=210,∠C=200,檢驗(yàn)工人量得∠BDC=1300,就斷定此零件不合格,請(qǐng)運(yùn)用所學(xué)知識(shí)說明理由。(運(yùn)用三種方法)AABCD三、練習(xí)提高夯實(shí)基礎(chǔ)1、若三角形的一個(gè)外角小于與它相鄰的內(nèi)角,則這個(gè)三角形是()A.直角三角形B.銳角三角形C.鈍角三角形D.無法確定2、如圖,∠CAB的外角為120°,∠B為40°,則∠C的度數(shù)是___.3、如圖1,AB∥CD,∠A=38°∠C=80°,則∠M為()A、52°B、42°C、10°D、40°2題3題4、如圖,在△ABC中,E是AC延長線上的一點(diǎn),D是BC上的一點(diǎn),∠1與∠A的大小關(guān)系是.5、若從一個(gè)多邊形的一個(gè)頂點(diǎn)最多可以引10條對(duì)角線,則它是()A.十三邊形B.十二邊形C.十一邊形D.十邊形6、下列可能是n邊形內(nèi)角和的是()A、300°B、550°C、720°D、960°7、一個(gè)多邊形的每一個(gè)外角都等于24°,則這個(gè)多邊形是邊形.8、一個(gè)多邊形的內(nèi)角和與外角和的比是7∶2,則這個(gè)多邊形是邊形.9、某人到瓷磚商店去購買一種多邊形形狀的瓷磚,用來鋪設(shè)無縫地板,他購買的瓷磚形狀不可以是()A、三角形B、矩形C、正八邊形D、正六邊形10、如圖,在△ABC中,AD是∠BAC的平分線,∠2=350,∠4=65°,求∠ADB的度數(shù).能力提高11、用邊長相等的正多邊形進(jìn)行密鋪,下列正多邊形能和正八邊形密鋪的是〔〕A、正三角形B、正六邊形C、正五邊形D、正四邊形12、如果一個(gè)三角形的各內(nèi)角與一個(gè)外角的和是225°,則與這個(gè)外角相鄰的內(nèi)角是____度.13、如圖,若∠A=32°,∠B=45°,∠C=38°,則∠DFE等于()A.120°B.115°C.110°D.105°13題15題14、一個(gè)多邊形的內(nèi)角中,銳角的個(gè)數(shù)最多有()A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)15、.如圖所示,∠A=50°,∠B=40°,∠C=30°,則∠BDC=________.16、一個(gè)多邊形的每一個(gè)內(nèi)角都比相鄰的外角的3倍還多20°,求這個(gè)多邊形對(duì)角線的條數(shù)。17、如圖所示,△ABC兩外角的平分線BP、CP交于點(diǎn)P,已知∠A=500,求∠P的度數(shù).探究創(chuàng)新18、如圖,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度數(shù)。本章小結(jié)一、知識(shí)結(jié)構(gòu)三角形三角形與三角形有關(guān)的線段三角形的內(nèi)角和三角形的外角和高中線角平分線多邊形的內(nèi)角和多邊形的外角和二、回顧與思考1、什么是三角形?什么是多邊形?什么是正多邊形?三角形是不是多邊形?2、什么是三角形的高、中線、角平分線?什么是對(duì)角線?三角形有對(duì)角線嗎?n邊形的的對(duì)角線有多少條?3、三角形的三條高,三條中線,三條角平分線各有什么特點(diǎn)?4、三角形的內(nèi)角和是多少?n邊形的內(nèi)角和是多少?你能用三角形的內(nèi)角和說明n邊形的內(nèi)角和嗎?5、三角形的外角和是多少?n邊形的外角和是多少?你能說明為什么多邊形的外角和與邊數(shù)無關(guān)嗎?6、怎樣才算是平面鑲嵌?平面鑲嵌的條件是什么?能單獨(dú)進(jìn)行平面鑲嵌的多邊形有哪些?你能舉一個(gè)幾個(gè)多邊形進(jìn)行平面鑲嵌的例子嗎?三、例題導(dǎo)引例1如圖,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分別是邊AC、AB上的高,BD、CE相交于點(diǎn)H,求∠BHC的度數(shù)。AABCDEH例2如圖,把△ABC沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),探索∠A與∠1+∠2有什么數(shù)量關(guān)系?并說明理由。112例3如圖所示,在△ABC中,△ABC的內(nèi)角平分線與外角平分線交于點(diǎn)P,試說明∠P=1/2∠A.四、鞏固練習(xí)課本90面復(fù)習(xí)題7(第3題可不做).七年級(jí)下學(xué)期第七章檢測題一、選擇題:(每小題3分,共30分)1、下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A、3㎝,4㎝,8㎝B、8㎝,7㎝,15㎝C、13㎝,12㎝,20㎝D、5㎝,5㎝,11㎝2、圖中三角形的個(gè)數(shù)為()A、4個(gè)B、6個(gè)C、8個(gè)D、10個(gè)6題2題6題2題3、已知多邊形的每一個(gè)內(nèi)角都等于150°,則這個(gè)多邊形是()(A)十二邊形(B)十邊形(C)八邊形(D)六邊形4、如果三角形三內(nèi)角之比是3︰2︰5,那么三角形是()A、銳角三角形B、直角三角形C、鈍角三角形D、正三角形5、邊長相等的下列兩種正多邊形的組合,不能作平面鑲嵌的是()A.正方形與正三角形B.正五邊形與正三角形C.正六邊形與正三角形D.正八邊形與正方形6、在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,則∠CBD等于()A.40°B.50°C.45°D.60°7、如圖,在銳角△ABC中,CD、BE分別是AB、AC邊上的高,且相交于一點(diǎn)P,若∠A=50°,則∠BPC的度數(shù)是()A.150°B.130°C.120°D.100°DADABECP9題10題8、...依次觀察左邊三個(gè)圖形,并判斷照此規(guī)律從左向右第四個(gè)圖形是()(A)(B)(C)(D)9、小芳畫一個(gè)有兩邊長分別為5和6的等腰三角形,則它的周長是()A、16B、17 C、11D、16或1710、如圖,正方形網(wǎng)格中,每個(gè)小方格都是邊長為1的正方形,A、B兩點(diǎn)在小方格的頂點(diǎn)上,位置如圖形所示,C也在小方格的頂點(diǎn)上,且以A、B、C為頂點(diǎn)的三角形面積為1個(gè)平方單位,則點(diǎn)C的個(gè)數(shù)為()A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)二、填空題:(每小題3分,共24分)11、如圖,為了使一扇舊木門不變形,木工師傅在木門的背面加釘了一根木條,這樣做的數(shù)學(xué)道理是.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年船舶潤滑油供應(yīng)合同
- 2025年機(jī)關(guān)單位臨時(shí)工兼職人員合同
- 2025年積分銷售合同協(xié)議書示例
- 2025年醫(yī)療設(shè)備策劃合作租賃與銷售框架合同
- 2025年住宅項(xiàng)目園林景觀設(shè)計(jì)合同
- 2025年農(nóng)地耕作權(quán)交換協(xié)議
- 2025年專利技術(shù)合同爭議處理方法
- 2025年企業(yè)資產(chǎn)重組授權(quán)代理協(xié)議指導(dǎo)
- 2025年智能穿戴項(xiàng)目申請(qǐng)報(bào)告模式
- 2025年共同投資合作成果合作協(xié)議書
- 體育賽事招商服務(wù)收費(fèi)方案
- 2025年高考數(shù)學(xué)總復(fù)習(xí):集合與常用邏輯用語(教師卷)
- 肌力分級(jí)護(hù)理課件
- 第三章-自然語言的處理(共152張課件)
- 中學(xué)教學(xué)課件:下第課《認(rèn)識(shí)人工智能》課件
- 《烏有先生歷險(xiǎn)記》注釋版
- 2023版初中語文新課程標(biāo)準(zhǔn)
- 六年級(jí)口算訓(xùn)練每日100道
- 顳下頜關(guān)節(jié)功能障礙的評(píng)估新技術(shù)
- XX小學(xué)法治副校長(派出所民警)法制教育課講稿
- 專項(xiàng)債券在燃?xì)饣A(chǔ)設(shè)施建設(shè)中的融資作用
評(píng)論
0/150
提交評(píng)論