




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
上海市羅山中學(xué)高三數(shù)學(xué)理測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.在三棱錐中,底面ABC,,,,則直線PA與平面PBC所成角的正弦值為A.
B. C.
D.參考答案:D2.(本小題滿分12分)已知函數(shù)對任意實數(shù)恒有,且當(dāng)x>0時,又.(1)判斷的奇偶性;
(2)求證:是上的減函數(shù);
(3)求在區(qū)間[-3,3]上的值域;
(4)若,不等式恒成立,求的取值范圍.參考答案:(1)解:取則取對任意恒成立
∴為奇函數(shù).3.設(shè)是定義在R上的函數(shù),則下列敘述一定正確的是
(
)
A.是奇函數(shù)
B.是奇函數(shù)
C.是偶函數(shù)
D.是偶函數(shù)參考答案:【知識點】函數(shù)奇偶性的判定.
B4【答案解析】D
解析:對于選項A:設(shè),則,所以是偶函數(shù),所以選項A不正確;同理可判斷:奇偶性不確定,是奇函數(shù),是偶函數(shù),所以選D.【思路點撥】依次設(shè)各選項中的函數(shù)為,再利用與關(guān)系確定結(jié)論.4.已知的終邊在第一象限,則“”是“” (
) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分與不必要條件參考答案:D略5.在△ABC中,A=60°,BC=,D是AB邊上的一點,CD=,△CBD的面積為1,則BD的長為()A. B.4 C.2 D.1參考答案:C【考點】余弦定理;正弦定理.【分析】根據(jù)三角形的面積求出sin∠BCD和cos∠BCD,結(jié)合余弦定理進行求解即可.【解答】解:∵△CBD的面積為1,∴S=CD?BCsin∠BCD=×sin∠BCD=1,即sin∠BCD=,∵A=60°,∴cos∠BCD=,在三角形BCD中,BD2=CD2+BC2﹣2CD?BCcos∠BCD=2+10﹣2??=12﹣8=4,則BD=2,故選:C.6.函數(shù)的圖象的大致形狀是
(
)
參考答案:D略7.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)是(
)A. B.C. D.參考答案:B【分析】分析各選項中函數(shù)的奇偶性與單調(diào)性,可得出正確選項.【詳解】對于A選項,函數(shù)的定義域為,,該函數(shù)為奇函數(shù),不合乎題意;對于B選項,函數(shù)的定義域為,,該函數(shù)為偶函數(shù),且該函數(shù)在上單調(diào)遞增,合乎題意;對于C選項,函數(shù)的定義域為,該函數(shù)為非奇非偶函數(shù),不合乎題意;對于D選項,函數(shù)的定義域為,,該函數(shù)為偶函數(shù),由于,所以,該函數(shù)在上不可能為增函數(shù),不合乎題意.故選:B.【點睛】本題考查函數(shù)奇偶性與單調(diào)性的判斷,考查函數(shù)單調(diào)性與奇偶性定義的應(yīng)用,屬于中等題.8.如圖,已知點是拋物線上一點,以為圓心,為半徑的圓與拋物線的準(zhǔn)線相切,且與軸的兩個交點的橫坐標(biāo)之積為5,則此圓的半徑為(
)A.
B.5
C.
D.4參考答案:D由拋物線定義得與軸的兩個交點必有一個為焦點(1,0),所以另一個交點為(5,0).因此選D.
9.
已知函數(shù)在上是減函數(shù),且對任意的總有則實數(shù)的取值范圍為(
)A.
B.
C.
D.參考答案:B10.極限存在是函數(shù)在點處連續(xù)的
(
)(A)充分而不必要的條件
(B)必要而不充分的條件(C)充要條件
(D)既不充分也不必要的條件
參考答案:答案:B二、填空題:本大題共7小題,每小題4分,共28分11.已知函數(shù),則函數(shù)的最小正周期為__________.參考答案:12.已知,則
(
).參考答案:,令,則,,所以,所以,.13.(坐標(biāo)系與參數(shù)方程選做題)若直線與曲線沒有公共點,則實數(shù)的取值范圍是
.參考答案:坐標(biāo)系與參數(shù)方程選做題)
略14.閱讀下面的流程圖,若輸入a=10,b=6,則輸出的結(jié)果是___________.參考答案:2略15.若,則=
;參考答案:316.已知x,y滿足,則z=x-y的取值范圍是
。參考答案:17.在△ABC中,∠A=90°,的值是
.參考答案:答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.二次函數(shù)滿足,且.(1)求的解析式;(2)在區(qū)間上,圖象恒在直線上方,試確定實數(shù)取值范圍.參考答案:(1)由,可設(shè)故由題意得,,解得;故(2)由題意得,
即對恒成立設(shè),則問題可轉(zhuǎn)化為又在上遞減,故,故
19.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:+=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,P為橢圓上一點(在x軸上方),連結(jié)PF1并延長交橢圓于另一點Q,設(shè)=λ.(1)若點P的坐標(biāo)為(1,),且△PQF2的周長為8,求橢圓C的方程;(2)若PF2垂直于x軸,且橢圓C的離心率e∈[,],求實數(shù)λ的取值范圍.參考答案:【考點】橢圓的簡單性質(zhì).【分析】(1)由F1,F(xiàn)2為橢圓C的兩焦點,且P,Q為橢圓上的點,利用橢圓的定義可得△PQF2的周長為4a.由點P的坐標(biāo)為(1,),可得+=1,解出即可得出.(2)利用向量坐標(biāo)運算性質(zhì)、點與橢圓的位置關(guān)系即可得出.【解答】解:(1)∵F1,F(xiàn)2為橢圓C的兩焦點,且P,Q為橢圓上的點,∴PF1+PF2=QF1+QF2=2a,從而△PQF2的周長為4a.由題意,得4a=8,解得a=2.
∵點P的坐標(biāo)為(1,),∴+=1,解得b2=3.∴橢圓C的方程為+=1.(2)∵PF2⊥x軸,且P在x軸上方,故設(shè)P(c,y0),y0>0.設(shè)Q(x1,y1).∵P在橢圓上,∴+=1,解得y0=,即P(c,).∵F1(﹣c,0),∴=(﹣2c,﹣),=(x1+c,y1).由=λ,得﹣2c=λ(x1+c),﹣=λy1,解得x1=﹣c,y1=﹣,∴Q(﹣c,﹣).∵點Q在橢圓上,∴()2e2+=1,即(λ+2)2e2+(1﹣e2)=λ2,(λ2+4λ+3)e2=λ2﹣1,∵λ+1≠0,∴(λ+3)e2=λ﹣1,從而λ==﹣3.∵e∈[,],∴≤e2≤,即≤λ≤5.∴λ的取值范圍為[,5].20.(12分)某學(xué)校為響應(yīng)省政府號召,每學(xué)期派老師到各個民工子弟學(xué)校支教,以下是該學(xué)校50名老師上學(xué)期在某一個民工子弟學(xué)校支教的次數(shù)統(tǒng)計結(jié)果:支教次數(shù)0123人數(shù)5102015根據(jù)上表信息解答以下問題:(1)從該學(xué)校任選兩名老師,用η表示這兩人支教次數(shù)之和,記“函數(shù)f(x)=x2﹣ηx﹣1在區(qū)間(4,5)上有且只有一個零點”為事件A,求事件A發(fā)生的概率P1;(2)從該學(xué)校任選兩名老師,用ξ表示這兩人支教次數(shù)之差的絕對值,求隨機變量ξ的分布列及數(shù)學(xué)期望Eξ.參考答案:(1)函數(shù)f(x)=x2﹣ηx﹣1過(0,﹣1)點,在區(qū)間(4,5)上有且只有一個零點,則必有,即:,解得:,∵∈N*,∴η=4.(3分)當(dāng)η=4時,P1==.(6分)(2)從該學(xué)校任選兩名老師,用ξ表示這兩人支教次數(shù)之差的絕對值,則ξ的可能取值分別是0,1,2,3,(7分)P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,(10分)從而ξ的分布列:ξ 0 1 2 3P ξ的數(shù)學(xué)期望:Eξ==.…(12分)21.(本小題滿分10分)在△ABC中,角A,B,C所對的邊分別為,且..(I)求的值;(II)若面積的最大值.
參考答案:(I);(II)【知識點】三角函數(shù)的性質(zhì)解三角形解析:(I)在△ABC中,由余弦定理可知,,由題意知,∴;又在△ABC中A+B+C=π,∴(II)∵b=2,∴由可得,∴,∵,∴,∴,∴△ABC面積的最大值為.【思路點撥】熟悉余弦定理特征是求角B的關(guān)鍵,當(dāng)已知三角形內(nèi)角時注意利用含夾角的面積公式進行解答.22.選修4-4:坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系xOy中,點,直線l的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租房委托書15篇
- 耳鼻喉科醫(yī)生工作總結(jié)
- 信用評價標(biāo)準(zhǔn)體系完善-洞察闡釋
- 文化能力提升計劃
- 既有單榀變截面門式剛架的穩(wěn)定性及加固分析
- 2024年深圳市寶安區(qū)區(qū)屬公辦中小學(xué)招聘教師真題
- 福建漳州第三醫(yī)院招聘筆試真題2024
- 廣東文藝職業(yè)學(xué)院《紀(jì)錄片賞析》2023-2024學(xué)年第二學(xué)期期末試卷
- 鄭州澍青醫(yī)學(xué)高等??茖W(xué)校《生物醫(yī)學(xué)信號處理》2023-2024學(xué)年第二學(xué)期期末試卷
- 昆明理工大學(xué)津橋?qū)W院《微觀經(jīng)濟學(xué)理論教學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 供應(yīng)商審核表
- 大型展會展臺搭建管理細(xì)則(3篇)
- 廉潔進校園知識競賽參考題庫200題(含答案)
- 【MOOC】數(shù)學(xué)建模精講-西南交通大學(xué) 中國大學(xué)慕課MOOC答案
- 勞動保障協(xié)理員-國家職業(yè)標(biāo)準(zhǔn)
- KAT1-2023井下探放水技術(shù)規(guī)范
- 卡薩帝小程序用戶運營優(yōu)化思考方案
- GB/T 44733-2024國家森林鄉(xiāng)村評價指標(biāo)
- 2024-2030年全球及中國鋰云母行業(yè)發(fā)展動態(tài)及投資前景預(yù)測報告
- 城市更新項目造價咨詢服務(wù)方案
- 消防工程火災(zāi)自動報警及聯(lián)動控制系統(tǒng)安裝施工方案
評論
0/150
提交評論