版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆江西省贛州市南康中學(xué)高三第三次模擬考試數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)且,則下列不等式成立的是()A. B. C. D.2.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1403.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.4.已知正項數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.5.若是定義域為的奇函數(shù),且,則A.的值域為 B.為周期函數(shù),且6為其一個周期C.的圖像關(guān)于對稱 D.函數(shù)的零點有無窮多個6.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.7.已知,,,,則()A. B. C. D.8.設(shè)雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.9.中國古代用算籌來進(jìn)行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.10.已知向量,且,則m=()A.?8 B.?6C.6 D.811.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.12.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____。14.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.15.已知函數(shù)是定義在上的奇函數(shù),其圖象關(guān)于直線對稱,當(dāng)時,(其中是自然對數(shù)的底數(shù),若,則實數(shù)的值為_____.16.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國累計報告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測2月10日全國累計報告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計公式分別為:,.18.(12分)已知函數(shù).(1)設(shè),若存在兩個極值點,,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).19.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點,直線與圓相交于、兩點,求的值.20.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.21.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數(shù)的取值范圍.22.(10分)中國古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關(guān)于長方形邊框的兩條對稱軸成軸對稱.設(shè)菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤.綜上所述,故選.2、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C3、C【解析】
根據(jù)程序框圖寫出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時.【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時,滿足輸出的值為8.故選:C【點睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結(jié)果即可解決,屬于簡單題目.4、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.5、D【解析】
運(yùn)用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域為的奇函數(shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點有無窮多個;因為,,令,則,即,所以的圖象關(guān)于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運(yùn)用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.6、A【解析】
根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.7、D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.8、C【解析】
求得拋物線的焦點坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點睛】本題主要考查了求雙曲線的方程,屬于中檔題.9、B【解析】
根據(jù)題意表示出各位上的數(shù)字所對應(yīng)的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應(yīng)算籌表示為中的.故選:.【點睛】本題主要考查學(xué)生的合情推理與演繹推理,屬于基礎(chǔ)題.10、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.11、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.12、C【解析】
令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減.當(dāng)時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。14、【解析】
根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運(yùn)算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標(biāo)為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關(guān)鍵是能夠利用圓的性質(zhì)和對數(shù)運(yùn)算法則構(gòu)造出滿足的方程,由此得到結(jié)果.15、【解析】
先推導(dǎo)出函數(shù)的周期為,可得出,代值計算,即可求出實數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關(guān)于直線對稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點睛】本題考查利用函數(shù)的對稱性計算函數(shù)值,解題的關(guān)鍵就是結(jié)合函數(shù)的奇偶性與對稱軸推導(dǎo)出函數(shù)的周期,考查推理能力與計算能力,屬于中等題.16、【解析】
根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運(yùn)算,關(guān)鍵在于恰當(dāng)?shù)貙ο蛄窟M(jìn)行轉(zhuǎn)換,便于計算解題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關(guān)性越高來判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因為與的相關(guān)近似為0.99,說明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【點睛】本題主要考查線性回歸分析和回歸方程的求解及應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負(fù),在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時,恒成立,在上單調(diào)增,,,.(ii)當(dāng)時,,故不滿足題意.綜上所述,【點睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,考查了分類討論,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.19、(1):,:;(2)【解析】
(1)消去參數(shù)求得直線的普通方程,將兩邊同乘以,化簡求得圓的直角坐標(biāo)方程.(2)求得直線的標(biāo)準(zhǔn)參數(shù)方程,代入圓的直角坐標(biāo)方程,化簡后寫出韋達(dá)定理,根據(jù)直線參數(shù)的幾何意義,求得的值.【詳解】(1)消去參數(shù),得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標(biāo)方程為;(2)經(jīng)檢驗點在直線上,可轉(zhuǎn)化為①,將①式代入圓的直角坐標(biāo)方程為得,化簡得,設(shè)是方程的兩根,則,,∵,∴與同號,由的幾何意義得.【點睛】本小題主要考查參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用直線參數(shù)的幾何意義求解距離問題,屬于中檔題.20、(1);(2)或.【解析】
(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過點,可得,進(jìn)而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設(shè)交點,直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業(yè)設(shè)計橋梁施工方案
- 比較教育教學(xué)課程設(shè)計
- 比亞迪國產(chǎn)車研究報告
- 固體分散載體材料相關(guān)行業(yè)投資規(guī)劃報告范本
- 殯葬企業(yè)分工方案
- 榜樣的力量主題課程設(shè)計
- 靈活就業(yè)合同范本
- 出租辦公室合同范本
- 二手商品房買賣合同范本
- 傭金合同范本模板
- 海底探測用自動潛航器相關(guān)項目實施方案
- 期中檢測卷(試題)-2024-2025學(xué)年統(tǒng)編版二年級語文上冊
- 2024年江蘇省氣象系統(tǒng)事業(yè)單位招聘61人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 2024年《中華人民共和國監(jiān)察法》知識測試題庫及答案
- Unit 2 Hobbies Welcome to the unit 教學(xué)設(shè)計2024-2025學(xué)年牛津譯林版英語七年級上冊
- 開卷作業(yè)風(fēng)險和隱患辨識、評估分級與控制措施一覽表
- 無人駕駛航空器安全操作理論復(fù)習(xí)測試附答案
- 鹽城市中小學(xué)“讓學(xué)引思”課堂教學(xué)改革行動方案
- 《2024年 面向農(nóng)業(yè)領(lǐng)域的大數(shù)據(jù)關(guān)鍵技術(shù)研究》范文
- 2024江蘇江南水務(wù)股份限公司招聘17人高頻500題難、易錯點模擬試題附帶答案詳解
- 2024-2030年勞動防護(hù)用品市場發(fā)展現(xiàn)狀調(diào)查及供需格局分析預(yù)測報告
評論
0/150
提交評論