遼寧省盤錦地區(qū)2024年中考數學模擬試題含解析_第1頁
遼寧省盤錦地區(qū)2024年中考數學模擬試題含解析_第2頁
遼寧省盤錦地區(qū)2024年中考數學模擬試題含解析_第3頁
遼寧省盤錦地區(qū)2024年中考數學模擬試題含解析_第4頁
遼寧省盤錦地區(qū)2024年中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省盤錦地區(qū)2024年中考數學模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.2.如圖,已知菱形ABCD,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為()A.16 B.12 C.24 D.183.如圖是一個由4個相同的長方體組成的立體圖形,它的主視圖是()A.B.C.D.4.如圖,在平面直角坐標系xOy中,菱形AOBC的一個頂點O在坐標原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數y=在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.805.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.56.如圖,在矩形ABCD中,E,F分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,FC=2,則AB的長為()A.8 B.8 C.4 D.67.如圖,每個小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.8.不等式組的解集為.則的取值范圍為()A. B. C. D.9.為了增強學生體質,學校發(fā)起評選“健步達人”活動,小明用計步器記錄自己一個月(30天)每天走的步數,并繪制成如下統(tǒng)計表:步數(萬步)1.01.21.11.41.3天數335712在每天所走的步數這組數據中,眾數和中位數分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.410.若,則3(x-2)2A.﹣6B.6C.18D.3011.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④12.下列各數中,為無理數的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風景區(qū)的點的坐標為,表示慕田峪長城的點的坐標為,則表示雁棲湖的點的坐標為______.14.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用_____秒鐘.15.如圖,點P的坐標為(2,2),點A,B分別在x軸,y軸的正半軸上運動,且∠APB=90°.下列結論:①PA=PB;②當OA=OB時四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結論是_____.(把你認為正確結論的序號都填上)16.點G是三角形ABC的重心,,,那么=_____.17.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點處,當△為直角三角形時,BE的長為.18.若a是方程的根,則=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結DE,OE、OD,求證:DE是⊙O的切線.20.(6分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE?。笞C:AB為⊙C的切線.求圖中陰影部分的面積.21.(6分)計算下列各題:(1)tan45°?sin60°?cos30°;(2)sin230°+sin45°?tan30°.22.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求23.(8分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。24.(10分)由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間(天)的關系如圖中線段l2所示(不考慮其他因素).(1)求原有蓄水量y1(萬m3)與時間(天)的函數關系式,并求當x=20時的水庫總蓄水量.(2)求當0≤x≤60時,水庫的總蓄水量y萬(萬m3)與時間x(天)的函數關系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴重干旱,直接寫出發(fā)生嚴重干旱時x的范圍.25.(10分)已知一個二次函數的圖象經過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數解析式以及點C的坐標.26.(12分)在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉,得△AC′D′,記旋轉角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結果即可).27.(12分)如圖①,二次函數的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最???若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【點睛】本題考查的知識點是截一個幾何體,解題的關鍵是熟練的掌握截一個幾何體.2、A【解析】

由菱形ABCD,∠B=60°,易證得△ABC是等邊三角形,繼而可得AC=AB=4,則可求得以AC為邊長的正方形ACEF的周長.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等邊三角形,∴AC=AB=BC=4,∴以AC為邊長的正方形ACEF的周長為:4AC=1.故選A.【點睛】本題考查了菱形的性質、正方形的性質以及等邊三角形的判定與性質.此題難度不大,注意掌握數形結合思想的應用.3、A【解析】由三視圖的定義可知,A是該幾何體的三視圖,B、C、D不是該幾何體的三視圖.故選A.點睛:從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,看不到的線畫虛線.本題從左面看有兩列,左側一列有兩層,右側一列有一層.4、B【解析】

過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,結合反比例函數圖象上點的坐標特征即可求出a的值,再根據四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結合菱形的面積公式即可得出結論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標為(a,a).∵點A在反比例函數y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質、解直角三角形以及反比例函數圖象上點的坐標特征,解題的關鍵是找出S△AOF=S菱形OBCA.5、A【解析】

先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【點睛】本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數量關系.6、D【解析】分析:連接OB,根據等腰三角形三線合一的性質可得BO⊥EF,再根據矩形的性質可得OA=OB,根據等邊對等角的性質可得∠BAC=∠ABO,再根據三角形的內角和定理列式求出∠ABO=30°,即∠BAC=30°,根據直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質,全等三角形的判定與性質,等腰三角形三線合一的性質,直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關鍵.7、B【解析】

根據相似三角形的判定方法一一判斷即可.【詳解】解:因為中有一個角是135°,選項中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點睛】本題考查相似三角形的性質,解題的關鍵是學會利用數形結合的思想解決問題,屬于中考常考題型.8、B【解析】

求出不等式組的解集,根據已知得出關于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點睛】本題考查了解一元一次不等式組的應用,解此題的關鍵是能根據不等式組的解集和已知得出關于k的不等式,難度適中.9、B【解析】

在這組數據中出現次數最多的是1.1,得到這組數據的眾數;把這組數據按照從小到大的順序排列,第15、16個數的平均數是中位數.【詳解】在這組數據中出現次數最多的是1.1,即眾數是1.1.要求一組數據的中位數,把這組數據按照從小到大的順序排列,第15、16個兩個數都是1.1,所以中位數是1.1.故選B.【點睛】本題考查一組數據的中位數和眾數,在求中位數時,首先要把這列數字按照從小到大或從的大到小排列,找出中間一個數字或中間兩個數字的平均數即為所求.10、B【解析】試題分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點:整式的混合運算—化簡求值;整體思想;條件求值.11、D【解析】試題分析:首先要理解清楚題意,知道總的客車數量及總的人數不變,然后采用排除法進行分析從而得到正確答案.解:根據總人數列方程,應是40m+10=43m+1,①錯誤,④正確;根據客車數列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.12、D【解析】A.=2,是有理數;B.=2,是有理數;C.,是有理數;D.,是無理數,故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

直接利用已知點坐標得出原點位置,進而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標確定位置,正確得出原點的位置是解題關鍵.14、2.5秒.【解析】

把此正方體的點A所在的面展開,然后在平面內,利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點睛】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.15、①②【解析】

過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當當OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,

∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPA=∠APB=90°,

∴∠MPA=∠NPB.

∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當OA=OB時,OA=OB=1,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.

∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.

,∵∠AOB+∠APB=180°,

∴點A、O、B、P共圓,且AB為直徑,所以

AB≥OP,故④錯誤.

故答案為:①②.【點睛】本題考查了全等三角形的性質和判定,三角形的內角和定理,坐標與圖形性質,正方形的性質的應用,關鍵是推出AM=BN和推出OA+OB=OM+ON16、.【解析】

根據題意畫出圖形,由,,根據三角形法則,即可求得的長,又由點G是△ABC的重心,根據重心的性質,即可求得.【詳解】如圖:BD是△ABC的中線,∵,∴=,∵,∴=﹣,∵點G是△ABC的重心,∴==﹣,故答案為:﹣.【點睛】本題考查了三角形的重心的性質:三角形的重心到三角形頂點的距離是它到對邊中點的距離的2倍,本題也考查了向量的加法及其幾何意義,是基礎題目.17、1或.【解析】

當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內部時,如答圖1所示.

連結AC,先利用勾股定理計算出AC=5,根據折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.

②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【詳解】當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內部時,如答圖1所示.

連結AC,

在Rt△ABC中,AB=1,BC=4,

∴AC==5,

∵∠B沿AE折疊,使點B落在點B′處,

∴∠AB′E=∠B=90°,

當△CEB′為直角三角形時,只能得到∠EB′C=90°,

∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

設BE=x,則EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得,

∴BE=;

②當點B′落在AD邊上時,如答圖2所示.

此時ABEB′為正方形,∴BE=AB=1.

綜上所述,BE的長為或1.

故答案為:或1.18、1【解析】

利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計算.【詳解】∵a是方程的根,

∴3a2-a-2=0,

∴3a2-a=2,

∴==5-2×2=1.

故答案為:1.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、詳見解析.【解析】試題分析:由三角形的中位線得出OE∥AB,進一步利用平行線的性質和等腰三角形性質,找出△OCE和△ODE相等的線段和角,證得全等得出答案即可.試題解析:證明:∵點E為AC的中點,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切線.點睛:此題考查切線的判定.證明的關鍵是得到△OCE≌△ODE.20、(1)證明見解析;(2)1-π.【解析】

(1)解直角三角形求出BC,根據勾股定理求出AB,根據三角形面積公式求出CF,根據切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質和判定等知識點,能求出CF的長是解答此題的關鍵.21、(1);(2).【解析】

(1)原式=1﹣×=1﹣=;(2)原式=×+×=.【點睛】本題考查特殊角的三角函數值,熟練掌握每個特殊角的三角函數值是解此題的關鍵.22、(1)證明見解析;(2)EH=【解析】

(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.23、見解析【解析】

在ABC和EAD中已經有一條邊和一個角分別相等,根據平行的性質和等邊對等角得出∠B=∠DAE證得ABC≌EAD,繼而證得AC=DE.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.【點睛】本題主要考查了平行四邊形的基本性質和全等三角形的判定及性質,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.24、(1)y1=-20x+1200,800;(2)15≤x≤40.【解析】

(1)根據圖中的已知點用待定系數法求出一次函數解析式(2)設y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范圍內求出解即可.【詳解】解:(1)設y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,當x=20時,y1=-20×20+1200=800,(2)設y2=kx+b,把(20,0)和(60,1000)代入得則,所以y2=25x-500,當0≤x≤20時,y=-20x+1200,當20<x≤60時,y=y1+y2=-20x+1200+25x-500=5x+700,由題意解得該不等式組的解集為15≤x≤40所以發(fā)生嚴重干旱時x的范圍為15≤x≤40.【點睛】此題重點考察學生對一次函數和一元一次不等式的實際應用能力,掌握一次函數和一元一次不等式的解法是解題的關鍵.25、y=2x2+x﹣3,C點坐標為(﹣,0)或(2,7)【解析】

設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,進而求出點C的坐標即可.【詳解】設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴拋物線的解析式為y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C點坐標為(﹣,0)或(2,7).【點睛】本題考查了用待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.26、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據對稱性確定D″的坐標;(II)如圖②,當α=60°時,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據對稱性可知,點D″在線段BC′上時,D″(6,4)也滿足條件.綜上所述,滿足條件的點D坐標(10,4)或(6,4).(II)如圖②,當α=60°時,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當B、C′、D′共線時,由(Ⅰ)可知,C′(8,4).②如圖④中,當B、C′、D′共線時,BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【點睛】本題考查三角形綜合題、旋轉變換、矩形的判定和性質、平行線的性質、勾股定理等知識,解題的關鍵是靈活應用所學知識解決問題,學會用分類討論的思想思考問題,屬于中考壓軸題.27、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網]∴點D與點E關于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論