版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
湖南省長沙瀏陽市2024屆中考聯(lián)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°2.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:A.4個 B.3個 C.2個 D.1個3.下列計算結(jié)果等于0的是()A. B. C. D.4.如圖所示的幾何體,它的左視圖是()A. B. C. D.5.下列計算正確的是A. B. C. D.6.不等式組的解集在數(shù)軸上可表示為()A. B. C. D.7.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發(fā),垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米8.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°9.人的大腦每天能記錄大約8600萬條信息,數(shù)據(jù)8600用科學記數(shù)法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×10210.-的絕對值是()A.-4 B. C.4 D.0.4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖1是我國古代著名的“趙爽弦圖”的示意圖,它是由四個全等的直角三角形圍成.若較短的直角邊BC=5,將四個直角三角形中較長的直角邊分別向外延長一倍,得到圖2所示的“數(shù)學風車”,若△BCD的周長是30,則這個風車的外圍周長是_____.12.分式方程的解為__________.13.為有效開展“陽光體育”活動,某校計劃購買籃球和足球共50個,購買資金不超過3000元.若每個籃球80元,每個足球50元,則籃球最多可購買_____個.14.某物流倉儲公司用如圖A,B兩種型號的機器人搬運物品,已知A型機器人比B型機器人每小時多搬運20kg,A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等,設B型機器人每小時搬運xkg物品,列出關于x的方程為_____.15.如圖所示的網(wǎng)格是正方形網(wǎng)格,點P到射線OA的距離為m,點P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)16.比較大?。篲__1.(填“>”、“<”或“=”)三、解答題(共8題,共72分)17.(8分)已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設∠OAC=α,請用α表示∠AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.18.(8分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).(1)求拋物線的解析式及其頂點D的坐標;(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.19.(8分)某工廠去年的總收入比總支出多50萬元,計劃今年的總收入比去年增加10%,總支出比去年節(jié)約20%,按計劃今年總收入將比總支出多100萬元.今年的總收入和總支出計劃各是多少萬元?20.(8分)解方程21.(8分)對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規(guī)作圖)22.(10分)某村大力發(fā)展經(jīng)濟作物,其中果樹種植已初具規(guī)模,該村果農(nóng)小張種植了黃桃樹和蘋果樹,為進一步優(yōu)化種植結(jié)構(gòu),小張將前年和去年兩種水果的銷售情況進行了對比:前年黃桃的市場銷售量為1000千克,銷售均價為6元/千克,去年黃桃的市場銷售量比前年減少了m%(m≠0),銷售均價與前年相同;前年蘋果的市場銷售量為2000千克,銷售均價為4元/千克,去年蘋果的市場銷售量比前年增加了2m%,但銷售均價比前年減少了m%.如果去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,求m的值.23.(12分)華聯(lián)超市準備代銷一款運動鞋,每雙的成本是170元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是200元時,每天的銷售量是40雙,而銷售單價每降低1元,每天就可多售出5雙,設每雙降低x元(x為正整數(shù)),每天的銷售利潤為y元.求y與x的函數(shù)關系式;每雙運動鞋的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少?24.如圖,點A、B在⊙O上,點O是⊙O的圓心,請你只用無刻度的直尺,分別畫出圖①和圖②中∠A的余角.(1)圖①中,點C在⊙O上;(2)圖②中,點C在⊙O內(nèi);
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點睛】本題主要考查平行線的性質(zhì),熟悉掌握性質(zhì)是關鍵.2、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結(jié)論有3個.故選B.3、A【解析】
各項計算得到結(jié)果,即可作出判斷.【詳解】解:A、原式=0,符合題意;
B、原式=-1+(-1)=-2,不符合題意;
C、原式=-1,不符合題意;
D、原式=-1,不符合題意,
故選:A.【點睛】本題考查了有理數(shù)的運算,熟練掌握運算法則是解本題的關鍵.4、D【解析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.5、B【解析】試題分析:根據(jù)合并同類項的法則,可知,故A不正確;根據(jù)同底數(shù)冪的除法,知,故B正確;根據(jù)冪的乘方,知,故C不正確;根據(jù)完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關鍵是靈活應用合并同類項法則,同底數(shù)冪的乘除法法則,冪的乘方,乘法公式進行計算.6、A【解析】
先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式組的解集為1<x≤2,在數(shù)軸上表示為:,故選A.【點睛】本題考查了解一元一次不等式組和在數(shù)軸上表示不等式組的解集,能根據(jù)不等式的解集找出不等式組的解集是解此題的關鍵.7、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.8、C【解析】
根據(jù)平行線性質(zhì)得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質(zhì)和角平分線定義,關鍵是求出∠DAC或∠BAC的度數(shù).9、C【解析】
科學記數(shù)法就是將一個數(shù)字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】數(shù)據(jù)8600用科學記數(shù)法表示為8.6×103故選C.【點睛】用科學記數(shù)法表示一個數(shù)的方法是(1)確定a:a是只有一位整數(shù)的數(shù);(2)確定n:當原數(shù)的絕對值≥10時,n為正整數(shù),n等于原數(shù)的整數(shù)位數(shù)減1;當原數(shù)的絕對值<1時,n為負整數(shù),n的絕對值等于原數(shù)中左起第一個非零數(shù)前零的個數(shù)(含整數(shù)位數(shù)上的零).10、B【解析】
直接用絕對值的意義求解.【詳解】?的絕對值是.故選B.【點睛】此題是絕對值題,掌握絕對值的意義是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、71【解析】分析:由題意∠ACB為直角,利用勾股定理求得外圍中一條邊,又由AC延伸一倍,從而求得風車的一個輪子,進一步求得四個.詳解:依題意,設“數(shù)學風車”中的四個直角三角形的斜邊長為x,AC=y,則x2=4y2+52,∵△BCD的周長是30,∴x+2y+5=30則x=13,y=1.∴這個風車的外圍周長是:4(x+y)=4×19=71.故答案是:71.點睛:本題考查了勾股定理在實際情況中的應用,注意隱含的已知條件來解答此類題.12、-1【解析】【分析】先去分母,化為整式方程,然后再進行檢驗即可得.【詳解】兩邊同乘(x+2)(x-2),得:x-2﹣3x=0,解得:x=-1,檢驗:當x=-1時,(x+2)(x-2)≠0,所以x=-1是分式方程的解,故答案為:-1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.13、1【解析】
設購買籃球x個,則購買足球個,根據(jù)總價單價購買數(shù)量結(jié)合購買資金不超過3000元,即可得出關于x的一元一次不等式,解之取其中的最大整數(shù)即可.【詳解】設購買籃球x個,則購買足球個,根據(jù)題意得:,解得:.為整數(shù),最大值為1.故答案為1.【點睛】本題考查了一元一次不等式的應用,根據(jù)各數(shù)量間的關系,正確列出一元一次不等式是解題的關鍵.14、【解析】
設B型機器人每小時搬運x
kg物品,則A型機器人每小時搬運(x+20)kg物品,根據(jù)“A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等”可列方程.【詳解】設B型機器人每小時搬運x
kg物品,則A型機器人每小時搬運(x+20)kg物品,根據(jù)題意可得,故答案為.【點睛】本題考查了由實際問題抽象出分式方程,解題的關鍵是根據(jù)數(shù)量關系列出關于x的分式方程.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)數(shù)量關系列出方程是關鍵.15、>【解析】
由圖像可知在射線OP上有一個特殊點Q,點Q到射線OA的距離QD=2,點Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數(shù)sin∠AOP>【詳解】由題意可知:找到特殊點Q,如圖所示:設點Q到射線OA的距離QD,點Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【點睛】本題考查了點到線的距離,熟知在直角三角形中利用三角函數(shù)來解角和邊的關系是解題關鍵.16、<.【解析】
根據(jù)算術(shù)平方根的定義即可求解.【詳解】解:∵=1,∴<=1,∴<1.故答案為<.【點睛】考查了算術(shù)平方根,非負數(shù)a的算術(shù)平方根a有雙重非負性:①被開方數(shù)a是非負數(shù);②算術(shù)平方根a本身是非負數(shù).三、解答題(共8題,共72分)17、(1);(2);(3)【解析】
(1)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內(nèi)角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據(jù)垂徑定理可得∠DOB等于30°,因為點D為BC的中點,則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據(jù)OA=OB=2,在直角三角形中用三角函數(shù)及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內(nèi)切.先根據(jù)兩圓相切時圓心距與兩圓半徑的關系,求出AD的長,再過O點作AE的垂線,利用勾股定理列出方程即可求解.【詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點D是BC的中點∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點,∴∠AOB=∠BOC=60°∴∠AOD=90°根據(jù)勾股定理得:AD=(3)①如圖3.圓O與圓D相內(nèi)切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=設AF=x在Rt△AFO和Rt△DOF中,即解得:∴AE=②如圖4.圓O與圓D相外切時:連接OB、OC,過O點作OF⊥AE∵BC是直徑,D是BC的中點∴以BC為直徑的圓的圓心為D點由(2)可得:OD=,圓D的半徑為1∴AD=在Rt△AFO和Rt△DOF中,即解得:∴AE=【點睛】本題主要考查圓的相關知識:垂徑定理,圓與圓相切的條件,關鍵是能靈活運用垂徑定理和勾股定理相結(jié)合思考問題,另外需注意圓相切要分內(nèi)切與外切兩種情況.18、(1)y=﹣(x﹣1)2+9,D(1,9);(2)p=﹣1;(3)存在點Q(2,1)使△QBC的面積最大.【解析】分析:(1)把點B的坐標代入y=ax2+2x+1求得a的值,即可得到該拋物線的解析式,再把所得解析式配方化為頂點式,即可得到拋物線頂點D的坐標;(2)由題意可知點P在直線CD上時,|PC﹣PD|取得最大值,因此,求得點C的坐標,再求出直CD的解析式,即可求得符合條件的點P的坐標,從而得到p的值;(3)由(1)中所得拋物線的解析式設點Q的坐標為(m,﹣m2+2m+1)(0<m<4),然后用含m的代數(shù)式表達出△BCQ的面積,并將所得表達式配方化為頂點式即可求得對應點Q的坐標.詳解:(1)∵拋物線y=ax2+2x+1經(jīng)過點B(4,0),∴16a+1+1=0,∴a=﹣1,∴拋物線的解析式為y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵當x=0時,y=1,∴C(0,1).設直線CD的解析式為y=kx+b.將點C、D的坐標代入得:,解得:k=1,b=1,∴直線CD的解析式為y=x+1.當y=0時,x+1=0,解得:x=﹣1,∴直線CD與x軸的交點坐標為(﹣1,0).∵當P在直線CD上時,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如圖,由(2)知,C(0,1),∵B(4,0),∴直線BC的解析式為y=﹣2x+1,過點Q作QE∥y軸交BC于E,設Q(m,﹣m2+2m+1)(0<m<4),則點E的坐標為:(m,﹣2m+1),∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,∴m=2時,S△QBC最大,此時點Q的坐標為:(2,1).點睛:(1)解第2小題時,知道當點P在直線CD上時,|PC﹣PD|的值最大,是找到解題思路的關鍵;(2)解第3小題的關鍵是設出點Q的坐標(m,﹣m2+2m+1)(0<m<4),并結(jié)合點B、C的坐標把△BCQ的面積用含m的代數(shù)式表達出來.19、今年的總收入為220萬元,總支出為1萬元.【解析】試題分析:設去年總收入為x萬元,總支出為y萬元,根據(jù)利潤=收入-支出即可得出關于x、y的二元一次方程組,解之即可得出結(jié)論.試題解析:設去年的總收入為x萬元,總支出為y萬元.根據(jù)題意,得,解這個方程組,得,∴(1+10%)x=220,(1-20%)y=1.答:今年的總收入為220萬元,總支出為1萬元.20、x=-1.【解析】
解:方程兩邊同乘x-2,得2x=x-2+1解這個方程,得x=-1檢驗:x=-1時,x-2≠0∴原方程的解是x=-1首先去掉分母,觀察可得最簡公分母是(x﹣2),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解,然后解一元一次方程,最后檢驗即可求解21、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標即可;(3)根據(jù)題意將點轉(zhuǎn)化為直線,點理想值最大時點在上,分析圖形即可.【詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當點在與軸切點時,點的“理想值”最小為0.當點縱坐標與橫坐標比值最大時,的“理想值”最大,此時直線與切于點,設點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設直線與軸、軸的交點分別為點,點,當x=0時,y=3,當y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當與軸相切時,LQ=0,相應的圓心滿足題意,其橫坐標取到最大值.作軸于點,∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當與直線相切時,LQ=,相應的圓心滿足題意,其橫坐標取到最小值.作軸于點,則.設直線與直線的交點為.∵直線中,k=,∴,∴,點F與Q重合,則.∵的半徑為1,∴.∴.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 羊肉代加工合同(2篇)
- 濟南的冬天說課稿8篇
- 南京工業(yè)大學浦江學院《視覺系統(tǒng)設計》2022-2023學年第一學期期末試卷
- 翠月嘉苑5-6#、11-12#、16-17#樓施工組織設計
- 發(fā)現(xiàn)與創(chuàng)作說課稿
- myschoolbag說課稿第課時
- 《整百整千加減法》說課稿
- 南京工業(yè)大學浦江學院《機械基礎綜合設計》2022-2023學年第一學期期末試卷
- 南京工業(yè)大學浦江學院《工程合同管理》2023-2024學年第一學期期末試卷
- 《全國文明城市創(chuàng)建》演講稿
- 低空飛行基地項目可行性研究報告寫作參考范文
- 2018年人教版九年級英語單詞表
- 成語故事課件一諾千金
- 物業(yè)公司環(huán)境因素清單
- 國內(nèi)旅游出團通知書(新版)
- 趕工措施費申請報告
- 全橋逆變電路濾波電路設計步驟
- 蒲公英總黃酮的提取及其抑菌性能
- 4gl語言開發(fā)原則及規(guī)范--簡化版
- 工程量確認單樣本(管線)
- 區(qū)最新關于生活垃圾分類工作推進會上的講話稿
評論
0/150
提交評論