浙江省寧波市諾丁漢大學(xué)附屬中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第1頁(yè)
浙江省寧波市諾丁漢大學(xué)附屬中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第2頁(yè)
浙江省寧波市諾丁漢大學(xué)附屬中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第3頁(yè)
浙江省寧波市諾丁漢大學(xué)附屬中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第4頁(yè)
浙江省寧波市諾丁漢大學(xué)附屬中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省寧波市諾丁漢大學(xué)附屬中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.2.已知的展開(kāi)式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.33.已知拋物線y2=4x的焦點(diǎn)為F,拋物線上任意一點(diǎn)P,且PQ⊥y軸交y軸于點(diǎn)Q,則的最小值為()A. B. C.l D.14.已知,其中是虛數(shù)單位,則對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.5.在中,內(nèi)角所對(duì)的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列6.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣27.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個(gè) B.個(gè) C.個(gè) D.個(gè)8.正三棱柱中,,是的中點(diǎn),則異面直線與所成的角為()A. B. C. D.9.過(guò)雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.10.已知數(shù)列中,,(),則等于()A. B. C. D.211.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}12.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為_(kāi)__________.14.如圖,直線是曲線在處的切線,則________.15.某校開(kāi)展“我身邊的榜樣”評(píng)選活動(dòng),現(xiàn)對(duì)3名候選人甲、乙、丙進(jìn)行不記名投票,投票要求詳見(jiàn)選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評(píng)選選票候選人符號(hào)注:1.同意畫(huà)“○”,不同意畫(huà)“×”.2.每張選票“○”的個(gè)數(shù)不超過(guò)2時(shí)才為有效票.甲乙丙16.在平面直角坐標(biāo)系xOy中,已知A0,a,B3,a+4三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個(gè)內(nèi)角、、所對(duì)邊分別為、、,若且,求面積的取值范圍.18.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對(duì)邊分別為,且,求的面積.19.(12分)某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表:并通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出人,進(jìn)行體育鍛煉體會(huì)交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63520.(12分)橢圓:的左、右焦點(diǎn)分別是,,離心率為,左、右頂點(diǎn)分別為,.過(guò)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、(不與點(diǎn)、重合),直線與直線相交于點(diǎn),求證:、、三點(diǎn)共線.21.(12分)在△ABC中,角所對(duì)的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.22.(10分)如圖,四邊形為菱形,為與的交點(diǎn),平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長(zhǎng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱,排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱是解題的關(guān)鍵.2、A【解析】

先求的展開(kāi)式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開(kāi)式的常數(shù)項(xiàng),從而求出的值.【詳解】展開(kāi)式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開(kāi)式中的系數(shù)問(wèn)題,其中對(duì)所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.3、A【解析】

設(shè)點(diǎn),則點(diǎn),,利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點(diǎn),則點(diǎn),,,,當(dāng)時(shí),取最小值,最小值為.故選:A.【點(diǎn)睛】本題考查拋物線背景下的向量的坐標(biāo)運(yùn)算,考查學(xué)生的計(jì)算能力,是基礎(chǔ)題.4、C【解析】

利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,,.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.5、C【解析】

由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.6、D【解析】

化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、C【解析】

計(jì)算球心連線形成的正四面體相對(duì)棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個(gè)球兩兩相切,這樣,相鄰的四個(gè)球的球心連線構(gòu)成棱長(zhǎng)為cm的正面體,易求正四面體相對(duì)棱的距離為cm,每裝兩個(gè)球稱為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個(gè)球.故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.8、C【解析】

取中點(diǎn),連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點(diǎn),連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設(shè),則,,,則,∴.故選:C.【點(diǎn)睛】本題考查通過(guò)幾何法求異面直線的夾角,考查計(jì)算能力.9、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).10、A【解析】

分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問(wèn)題得以解決.【詳解】解:∵,(),

,

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

故選:A.【點(diǎn)睛】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.11、D【解析】

解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧希蔬x:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.12、B【解析】

由目標(biāo)函數(shù)的最大值為9,我們可以畫(huà)出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫(huà)出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點(diǎn)睛】如果約束條件中含有參數(shù),我們可以先畫(huà)出不含參數(shù)的幾個(gè)不等式對(duì)應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個(gè)含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問(wèn)題,考查了直線與平面所成角的計(jì)算.對(duì)于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.14、.【解析】

求出切線的斜率,即可求出結(jié)論.【詳解】由圖可知直線過(guò)點(diǎn),可求出直線的斜率,由導(dǎo)數(shù)的幾何意義可知,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.15、91【解析】

設(shè)共有選票張,且票對(duì)應(yīng)張數(shù)為,由此可構(gòu)造不等式組化簡(jiǎn)得到,由投票有效率越高越小,可知,由此計(jì)算可得投票有效率.【詳解】不妨設(shè)共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡(jiǎn)得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃的實(shí)際應(yīng)用問(wèn)題,關(guān)鍵是能夠根據(jù)已知條件構(gòu)造出變量所滿足的關(guān)系式.16、(-53,【解析】

求出AB的長(zhǎng)度,直線方程,結(jié)合△ABC的面積為5,轉(zhuǎn)化為圓心到直線的距離進(jìn)行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設(shè)△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個(gè)不同的點(diǎn)C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應(yīng)該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系的應(yīng)用,求出直線方程和AB的長(zhǎng)度,轉(zhuǎn)化為圓心到直線的距離是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】

(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,利用余弦定理結(jié)合基本不等式求出的取值范圍,再結(jié)合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,的面積.【點(diǎn)睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解,同時(shí)也考查了三角形面積取值范圍的計(jì)算,涉及余弦定理和基本不等式的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(1);(2)或【解析】

(1)利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結(jié)合范圍,可求的值,由余弦定理可求的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當(dāng)時(shí),由余弦定理得即,解得.此時(shí).當(dāng)時(shí),由余弦定理得.即,解得.此時(shí).【點(diǎn)睛】本題主要考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算、正弦函數(shù)的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和分類討論思想,屬于基礎(chǔ)題.19、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見(jiàn)解析.【解析】

(1)根據(jù)所給數(shù)據(jù)可完成列聯(lián)表.由總?cè)藬?shù)及女生人數(shù)得男生人數(shù),由表格得達(dá)標(biāo)人數(shù),從而得男生中達(dá)標(biāo)人數(shù),這樣不達(dá)標(biāo)人數(shù)隨之而得,然后計(jì)算可得結(jié)論;(2)由達(dá)標(biāo)人數(shù)中男女生人數(shù)比為可得抽取的人數(shù),總共選2人,女生有4人,的可能值為0,1,2,分別計(jì)算概率得分布列,再由期望公式可計(jì)算出期望.【詳解】(1)列出列聯(lián)表,,所以在犯錯(cuò)誤的概率不超過(guò)的前提下能判斷“課外體育達(dá)標(biāo)”與性別有關(guān).(2)(i)在“鍛煉達(dá)標(biāo)”的學(xué)生中,男女生人數(shù)比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,人中女生的人數(shù)為,則的可能值為,,,則,,,可得的分布列為:可得數(shù)學(xué)期望.【點(diǎn)睛】本題考查列聯(lián)表與獨(dú)立性檢驗(yàn),考查分層抽樣,隨機(jī)變量的概率分布列和期望.主要考查學(xué)生的數(shù)據(jù)處理能力,運(yùn)算求解能力,屬于中檔題.20、(1);(2)見(jiàn)解析【解析】

(1)根據(jù)已知可得,結(jié)合離心率和關(guān)系,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)斜率不為零,設(shè)的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標(biāo)關(guān)系,求出方程,令求出坐標(biāo),要證、、三點(diǎn)共線,只需證,將分子用縱坐標(biāo)表示,即可證明結(jié)論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設(shè)的方程為,聯(lián)立方程,消去得,由題意,得恒成立,設(shè),,所以,直線的方程為.令,得.又

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論