(3.1)-數(shù)學(xué)專題選講學(xué)大綱_第1頁
(3.1)-數(shù)學(xué)專題選講學(xué)大綱_第2頁
(3.1)-數(shù)學(xué)專題選講學(xué)大綱_第3頁
(3.1)-數(shù)學(xué)專題選講學(xué)大綱_第4頁
(3.1)-數(shù)學(xué)專題選講學(xué)大綱_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

《數(shù)學(xué)專題選講》教學(xué)大綱《數(shù)學(xué)專題選講》教學(xué)大綱

《數(shù)學(xué)專題選講》教學(xué)大綱第一部分大綱說明一、課程性質(zhì)與任務(wù):《數(shù)學(xué)專題選講》是數(shù)學(xué)與應(yīng)用數(shù)學(xué)、信息與計算科學(xué)、經(jīng)濟(jì)管理類等各專業(yè)的一門專業(yè)拓展課。通過課程的學(xué)習(xí),幫助學(xué)生鞏固前期所學(xué)的微積分理論,引導(dǎo)學(xué)生對微積分的深入學(xué)習(xí),從而提高學(xué)生的微積分綜合素質(zhì),更好地培養(yǎng)學(xué)生的數(shù)學(xué)能力與數(shù)學(xué)思維,為將來學(xué)生后繼的專業(yè)學(xué)習(xí)和研究奠定堅實的理論基礎(chǔ)。二、教學(xué)對象:數(shù)學(xué),信息與計算科學(xué)、經(jīng)濟(jì)管理類本科各個專業(yè)二、三年級年級以上在校大學(xué)生三、教學(xué)目的和要求:夯實基礎(chǔ)。較全面講透微積分的經(jīng)典理論和方法,幫助學(xué)生理解其中的深刻內(nèi)涵;重點講授方法,強(qiáng)調(diào)運算和證明的技巧;強(qiáng)化訓(xùn)練過程,提高學(xué)生應(yīng)用數(shù)學(xué)知識解決問題的能力。四、先修課程:微積分、高等數(shù)學(xué)、數(shù)學(xué)分析五、使用教材及參考資料:使用教材:自編講義。參考資料:[1]《高等數(shù)學(xué)》(第七版),同濟(jì)大學(xué)數(shù)學(xué)系,高等教學(xué)出版社,2016年。[2]《微積分》(第四版),趙樹嫄,人民大學(xué)出版社,2016年。[3]《2022版張宇考研數(shù)學(xué)基礎(chǔ)30講》,張宇主編,北京理工大學(xué)出版社,2020年。[4]《考研數(shù)學(xué)歷年真題全精解析》,李永樂,西安交通大學(xué)出版社,2018年[5]《數(shù)學(xué)歷年真題全精解析(數(shù)學(xué)三)》,李永樂主編,西安交通大學(xué)出版社,2021年。[6]《數(shù)學(xué)基礎(chǔ)過關(guān)660題(數(shù)學(xué)三)》,李永樂等編著,中國農(nóng)業(yè)出版社,2020年。六、教學(xué)形式、教學(xué)方法及實踐性環(huán)節(jié):教學(xué)形式:課堂教學(xué);網(wǎng)絡(luò)課程教學(xué)教學(xué)方法:講授七、考核:考核形式:考察;成績評定:期末考試(50%),平時考核(50%);八、課時分配表:《數(shù)學(xué)專題選講》章目教學(xué)內(nèi)容教學(xué)課時第一講函數(shù)、極限、連續(xù)12第二講一元函數(shù)微分學(xué)14第三講一元函數(shù)積分學(xué)14第四講多元函數(shù)微分學(xué)8第五講二重積分8第六講無窮級數(shù)8第七講常微分方程與差分方程8九、教學(xué)進(jìn)度表:周次學(xué)時教學(xué)內(nèi)容第一周4高等數(shù)學(xué)預(yù)備知識第二周4數(shù)列極限、函數(shù)極限與連續(xù)性第三周4函數(shù)極限與連續(xù)性第四周4中秋放假、一元函數(shù)微分學(xué)的概念與計算第五周4一元函數(shù)微分學(xué)的概念與計算、一元函數(shù)微分學(xué)的幾何應(yīng)用第六周4國慶放假第七周4中值定理第八周4零點問題與微分不等式、一元函數(shù)積分學(xué)的概念與計算第九周4一元函數(shù)積分學(xué)的概念與計算第十周4一元函數(shù)積分學(xué)的幾何應(yīng)用第十一周4積分等式與積分不等式、多元函數(shù)微分學(xué)第十二周4多元函數(shù)微分學(xué)第十三周4二重積分第十四周4常微分方程第十五周4常微分方程第十六周4無窮級數(shù)第十七周4無窮級數(shù)、數(shù)學(xué)三專題內(nèi)容第十八周4數(shù)學(xué)三專題內(nèi)容、期末考試十、主講教師:朱存斌(副教授),葛莉(副教授),李清棟(講師)等。第二部分教學(xué)內(nèi)容第一講函數(shù)、極限與連續(xù)基本教學(xué)內(nèi)容與要求了解:1.函數(shù)的定義及性質(zhì);2.基本初等函數(shù)、初等函數(shù)的概念;3.經(jīng)濟(jì)學(xué)中的常用函數(shù);4.數(shù)列和函數(shù)極限概念;5.無窮小和無窮大的概念;6.極限的運算法則,極限存在準(zhǔn)則與兩個重要極限;7.初等函數(shù)的連續(xù)性;8.閉區(qū)間上連續(xù)函數(shù)的性質(zhì),理解:1.復(fù)合函數(shù)與分段函數(shù)的概念;2.無窮小量的概念和基本性質(zhì);3.函數(shù)連續(xù)性;掌握:1.函數(shù)的表示法;2.極限的四則運算;3.利用洛必達(dá)法則求未定式極限;4.利用兩個重要極限求極限;5.無窮小的比較。教學(xué)重點、難點1.數(shù)列、函數(shù)極限的計算方法;2.函數(shù)的連續(xù)性判斷及間斷點類型的判斷;3.閉區(qū)間上連續(xù)函數(shù)性質(zhì)的應(yīng)用。具體內(nèi)容(1)函數(shù)的概念及表示法、簡單應(yīng)用問題的函數(shù)關(guān)系的建立.

(2)函數(shù)的性質(zhì):有界性、單調(diào)性、周期性和奇偶性.

(3)復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)、基本初等函數(shù)的性質(zhì)及其圖形、初等函數(shù).

(4)數(shù)列極限與函數(shù)極限的定義及其性質(zhì)、函數(shù)的左極限與右極限.

(5)無窮小和無窮大的概念及其關(guān)系、無窮小的性質(zhì)及無窮小的比較.

(6)極限的四則運算、極限存在的單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則、兩個重要極限.

(7)函數(shù)的連續(xù)性(含左連續(xù)與右連續(xù))、函數(shù)間斷點的類型.

(8)連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性.

(9)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理).第二講一元函數(shù)微分學(xué)導(dǎo)數(shù)、微分及其應(yīng)用基本教學(xué)內(nèi)容與要求了解:1.導(dǎo)數(shù)的定義及幾何意義;2.高階導(dǎo)數(shù);3.微分的概念;4.邊際與彈性;5.柯西中值定理,泰勒定理。理解:1.可導(dǎo)和連續(xù)之間的關(guān)系;2.函數(shù)的極值與最值;3.羅爾中值定理,拉格朗日中值定理;掌握:1.導(dǎo)數(shù)的幾何意義;2.分段函數(shù),反函數(shù)與隱函數(shù)的導(dǎo)數(shù);3.簡單函數(shù)的高階導(dǎo)數(shù);4.函數(shù)的微分;5.利用函數(shù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和凹凸性;6.求函數(shù)的極值與最值;7.微分中值定理的應(yīng)用。教學(xué)重點、難點1.導(dǎo)數(shù)和高階導(dǎo)數(shù)的求解;2.中值定理的應(yīng)用;3.單調(diào)性的判斷、凹凸性的判斷、極值最值的求法。具體內(nèi)容(1)導(dǎo)數(shù)和微分的概念、導(dǎo)數(shù)的幾何意義和物理意義、函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系、平面曲線的切線和法線.

(2)基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)和微分的四則運算、一階微分形式的不變性.

(3)復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法.

(4)高階導(dǎo)數(shù)的概念、分段函數(shù)的二階導(dǎo)數(shù)、某些簡單函數(shù)的n階導(dǎo)數(shù).

(5)微分中值定理,包括羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒定理.

(6)洛必達(dá)(L’Hospital)法則與求未定式極限.

(7)函數(shù)的極值、函數(shù)單調(diào)性、函數(shù)圖形的凹凸性、拐點及漸近線(水平、鉛直和斜漸近線)、函數(shù)圖形的描繪.

(8)函數(shù)最大值和最小值及其簡單應(yīng)用.

第三講一元函數(shù)積分學(xué)不定積分、定積分及其應(yīng)用基本教學(xué)內(nèi)容與要求了解:1.定積分的概念、性質(zhì);2.微積分中值定理;3.反常積分的概念;理解:1.原函數(shù)與不定積分的概念、性質(zhì);2.積分上限函數(shù);掌握:1.不定積分、定積分的計算法;2.積分上限函數(shù)的導(dǎo)數(shù);3.定積分的幾何應(yīng)用;4.反常積分的計算。教學(xué)重點、難點1.不定積分的計算;2.定積分的性質(zhì)和計算;3.定積分的幾何應(yīng)用。具體內(nèi)容(1)原函數(shù)和不定積分的概念.

(2)不定積分的基本性質(zhì)、基本積分公式.

(3)定積分的概念和基本性質(zhì)、定積分中值定理、變上限定積分確定的函數(shù)及其導(dǎo)數(shù)、牛頓-萊布尼茨(Newton-Leibniz)公式.

(4)不定積分和定積分的換元積分法與分部積分法.

(5)有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分.

(6)廣義積分.

(7)定積分的應(yīng)用:平面圖形的面積,旋轉(zhuǎn)體的體積,平行截面面積為已知的立體體積,函數(shù)的平均值.

第四講多元函數(shù)微分學(xué)基本教學(xué)內(nèi)容與要求了解:1.多元函數(shù)的概念;2.二元函數(shù)的幾何意義;3.二元函數(shù)的極限與連續(xù)的概念;4.多元函數(shù)的偏導(dǎo)數(shù)與全微分的概念概念;5.偏導(dǎo)數(shù)及其在經(jīng)濟(jì)分析中的應(yīng)用;理解:1.多元復(fù)合函數(shù)的求導(dǎo)法則及隱函數(shù)的求導(dǎo)公式;2.二元函數(shù)極值存在的充分條件;掌握:1.求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù);2.求多元隱函數(shù)的偏導(dǎo)數(shù);3.二元函數(shù)無條件極值和條件極值;4.簡單多元函數(shù)的最值,并解決簡單的應(yīng)用問題。教學(xué)重點、難點1.偏導(dǎo)數(shù)的定義及計算;2.多元復(fù)合函數(shù)的求導(dǎo)法則及隱函數(shù)的求導(dǎo)公式;4.多元函數(shù)的極值最值及其應(yīng)用。具體內(nèi)容(1)多元函數(shù)的概念、二元函數(shù)的幾何意義.

(2)二元函數(shù)的極限和連續(xù)的概念、有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì).

(3)多元函數(shù)偏導(dǎo)數(shù)和全微分、全微分存在的必要條件和充分條件.

(4)多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)

(5)隱函數(shù)求導(dǎo)公式(6)多元函數(shù)極值和條件極值、拉格朗日乘數(shù)法、多元函數(shù)的最大值、最小值及其簡單應(yīng)用.

第五講二重積分基本教學(xué)內(nèi)容與要求了解:1.二重的概念和基本性質(zhì);2.無界區(qū)域上簡單的反常二重積分;理解:二重積分的幾何意義;掌握:1.二重積分的計算方法(直角坐標(biāo),極坐標(biāo))。教學(xué)重點、難點1.二重的計算;2.二重積分的積分次序交換。具體內(nèi)容(1)二重積分概念及性質(zhì)、二重積分的計算(直角坐標(biāo)、極坐標(biāo))

(2)直角坐標(biāo)系下二重積分的計算,對稱性在二重積分中的應(yīng)用(3)直角坐標(biāo)系下二重積分的積分次序交換

(4)極坐標(biāo)系下二重積分的計算

第六講無窮級數(shù)基本教學(xué)內(nèi)容與要求了解:1.常數(shù)項級數(shù)的斂散性的概念;2.任意項級數(shù)絕對收斂與條件收斂的概念;3.交錯級數(shù)的萊布尼茲判別法;4.冪級數(shù)在其收斂區(qū)間的基本性質(zhì);掌握:1.p級數(shù)的收斂與發(fā)散的條件;2.正項級數(shù)收斂的判別法;3.冪級數(shù)的收斂半徑、收斂域及和函數(shù);4.簡單函數(shù)的冪級數(shù)展開。教學(xué)重點、難點1.正項級數(shù)及其審斂法;2.任意項級數(shù)的絕對收斂與條件收斂的判定;3.冪級數(shù)的收斂半徑、收斂區(qū)間和收斂域的求解;4.簡單冪級數(shù)的和函數(shù)的求解;5.間接展開法將函數(shù)展開為冪級數(shù)。具體內(nèi)容(1)常數(shù)項級數(shù)的收斂與發(fā)散、收斂級數(shù)的和、級數(shù)的基本性質(zhì)與收斂的必要條件.

(2)幾何級數(shù)與p級數(shù)及其收斂性、正項級數(shù)收斂性的判別法、交錯級數(shù)與萊布尼茨(Leibniz)判別法.

(3)任意項級數(shù)的絕對收斂與條件收斂.

(4)函數(shù)項級數(shù)的收斂域與和函數(shù)的概念.

(5)冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)、收斂域與和函數(shù).

(6)簡單冪級數(shù)的和函數(shù)的求法.

(7)初等函數(shù)的冪級數(shù)展開式.

第七講常微分方程與差分方程基本教學(xué)內(nèi)容與要求了解:1.常微分方程的基本概念;2.線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理;3.差分方程的基本概念;掌握:1.一階變量分離方程,齊次方程,線性微分方程的求解;2.二階常系數(shù)線性微分方程的求解;3.用微分方程求解簡單的經(jīng)濟(jì)應(yīng)用問題;4.一階常系數(shù)線性差分方程的求解。教學(xué)重點、難點1.一階微分方程(變量分離方程,齊次方程,線性方程)的解法;2.二階常系數(shù)線性微分方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論