![江蘇省揚州大附屬中學2023-2024學年中考猜題數學試卷含解析_第1頁](http://file4.renrendoc.com/view12/M01/24/15/wKhkGWZH8-mAWjL3AAIKaeB2Ckc734.jpg)
![江蘇省揚州大附屬中學2023-2024學年中考猜題數學試卷含解析_第2頁](http://file4.renrendoc.com/view12/M01/24/15/wKhkGWZH8-mAWjL3AAIKaeB2Ckc7342.jpg)
![江蘇省揚州大附屬中學2023-2024學年中考猜題數學試卷含解析_第3頁](http://file4.renrendoc.com/view12/M01/24/15/wKhkGWZH8-mAWjL3AAIKaeB2Ckc7343.jpg)
![江蘇省揚州大附屬中學2023-2024學年中考猜題數學試卷含解析_第4頁](http://file4.renrendoc.com/view12/M01/24/15/wKhkGWZH8-mAWjL3AAIKaeB2Ckc7344.jpg)
![江蘇省揚州大附屬中學2023-2024學年中考猜題數學試卷含解析_第5頁](http://file4.renrendoc.com/view12/M01/24/15/wKhkGWZH8-mAWjL3AAIKaeB2Ckc7345.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省揚州大附屬中學2023-2024學年中考猜題數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.實數在數軸上的點的位置如圖所示,則下列不等關系正確的是()A.a+b>0 B.a-b<0 C.<0 D.>2.股市有風險,投資需謹慎.截至今年五月底,我國股市開戶總數約95000000,正向1億挺進,95000000用科學計數法表示為()A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×1093.已知a=(+1)2,估計a的值在()A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間4.如圖,在平面直角坐標系xOy中,點C,B,E在y軸上,Rt△ABC經過變化得到Rt△EDO,若點B的坐標為(0,1),OD=2,則這種變化可以是()A.△ABC繞點C順時針旋轉90°,再向下平移5個單位長度B.△ABC繞點C逆時針旋轉90°,再向下平移5個單位長度C.△ABC繞點O順時針旋轉90°,再向左平移3個單位長度D.△ABC繞點O逆時針旋轉90°,再向右平移1個單位長度5.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.6.已知一組數據,,,,的平均數是2,方差是,那么另一組數據,,,,,的平均數和方差分別是.A. B. C. D.7.如圖,A,B兩點分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學幫他想了一個主意:先在地上取一個可以直接到達A,B的點C,找到AC,BC的中點D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m8.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形9.已知反比例函數y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣210.化簡的結果是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.觀察下列等式:第1個等式:a1=;第2個等式:a2=;第3個等式:a3=;…請按以上規(guī)律解答下列問題:(1)列出第5個等式:a5=_____;(2)求a1+a2+a3+…+an=,那么n的值為_____.12.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.13.△ABC中,∠A、∠B都是銳角,若sinA=,cosB=,則∠C=_____.14.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據是:__________________________________________________.15.已知實數x,y滿足,則以x,y的值為兩邊長的等腰三角形的周長是______.16.如圖,在矩形ABCD中,AD=3,將矩形ABCD繞點A逆時針旋轉,得到矩形AEFG,點B的對應點E落在CD上,且DE=EF,則AB的長為_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以OA,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數表達式為;(2)記△OMP的面積為S,求S與t的函數關系式;并求t為何值時,S有最大值,并求出最大值.18.(8分)如圖,某市郊外景區(qū)內一條筆直的公路a經過三個景點A、B、C,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點D,經測量,景點D位于景點A的北偏東30′方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.景區(qū)管委會準備由景點D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結果精確到0.1km).求景點C與景點D之間的距離.(結果精確到1km).19.(8分)如圖,已知拋物線經過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.(1)求該拋物線所表示的二次函數的表達式;(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.20.(8分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.21.(8分)下面是一位同學的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點O為端點畫射線,.(2)在上依次截取,.(3)在上截?。?)聯(lián)結,過點B作,交于點D.所以:線段________就是所求的線段x.①試將結論補完整②這位同學作圖的依據是________③如果,,,試用向量表示向量.22.(10分)解方程:23.(12分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數的解析式;(1)求三角形CDE的面積.24.如圖,點C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點F.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據點在數軸上的位置,可得a,b的關系,根據有理數的運算,可得答案.【詳解】解:由數軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數與數軸,利用點在數軸上的位置得出b<-1,0<a<1是解題關鍵,又利用了有理數的運算.2、B【解析】試題分析:15000000=1.5×2.故選B.考點:科學記數法—表示較大的數3、D【解析】
首先計算平方,然后再確定的范圍,進而可得4+的范圍.【詳解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之間,故選D.【點睛】此題主要考查了估算無理數的大小,用有理數逼近無理數,求無理數的近似值.4、C【解析】
Rt△ABC通過變換得到Rt△ODE,應先旋轉然后平移即可【詳解】∵Rt△ABC經過變化得到Rt△EDO,點B的坐標為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點C順時針旋轉90°,再向下平移3個單位長度,即可得到△DOE;或將△ABC繞點O順時針旋轉90°,再向左平移3個單位長度,即可得到△DOE;故選:C.【點睛】本題考查的是坐標與圖形變化旋轉和平移的知識,解題的關鍵在于利用旋轉和平移的概念和性質求坐標的變化5、B【解析】
先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.6、D【解析】
根據數據的變化和其平均數及方差的變化規(guī)律求得新數據的平均數及方差即可.【詳解】解:∵數據x1,x2,x3,x4,x5的平均數是2,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數是3×2-2=4;∵數據x1,x2,x3,x4,x5的方差為,∴數據3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當數據都加上一個數(或減去一個數)時,平均數也加或減這個數,方差不變,即數據的波動情況不變;當數據都乘以一個數(或除以一個數)時,平均數也乘以或除以這個數,方差變?yōu)檫@個數的平方倍.7、D【解析】
根據三角形的中位線定理即可得到結果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點睛】本題考查的是三角形的中位線,解答本題的關鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.8、C【解析】
根據平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【點睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵9、D【解析】
根據反比例函數的性質可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數y=﹣,∴在每個象限內,y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【點睛】本題考查了反比例函數的性質,解答本題的關鍵是明確題意,求出相應的y的取值范圍,利用反比例函數的性質解答.10、D【解析】
將除法變?yōu)槌朔ǎ喍胃?,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、49【解析】
(1)觀察等式可得然后根據此規(guī)律就可解決問題;
(2)只需運用以上規(guī)律,采用拆項相消法即可解決問題.【詳解】(1)觀察等式,可得以下規(guī)律:,∴(2)解得:n=49.故答案為:49.【點睛】屬于規(guī)律型:數字的變化類,觀察題目,找出題目中數字的變化規(guī)律是解題的關鍵.12、1【解析】
∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.13、60°.【解析】
先根據特殊角的三角函數值求出∠A、∠B的度數,再根據三角形內角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案為60°.【點睛】本題考查的是特殊角的三角函數值及三角形內角和定理,比較簡單.14、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】
先利用作法判定OA=OC,OD=OB,則根據平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.15、1或2【解析】
先根據非負數的性質列式求出x、y的值,再分x的值是腰長與底邊兩種情況討論求解.【詳解】根據題意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰長時,三角形的三邊分別為5、5、7,三角形的周長為1.②5是底邊時,三角形的三邊分別為5、7、7,能組成三角形,5+7+7=2;所以,三角形的周長為:1或2;故答案為1或2.【點睛】本題考查了等腰三角形的性質,絕對值與算術平方根的非負性,根據幾個非負數的和等于0,則每一個算式都等于0求出x、y的值是解題的關鍵,難點在于要分情況討論并且利用三角形的三邊關系進行判斷.16、3【解析】【分析】根據旋轉的性質知AB=AE,在直角三角形ADE中根據勾股定理求得AE長即可得.【詳解】∵四邊形ABCD是矩形,∴∠D=90°,BC=AD=3,∵將矩形ABCD繞點A逆時針旋轉得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案為3.【點睛】本題考查矩形的性質和旋轉的性質,熟知旋轉前后哪些線段是相等的是解題的關鍵.三、解答題(共8題,共72分)17、(1),;(2),1,1.【解析】
(1)根據四邊形OABC為矩形即可求出點B坐標,設直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數的性質求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【點睛】本題考查了二次函數與幾何動態(tài)問題,解題的關鍵是根據題意表達出點的坐標,利用幾何知識列出函數關系式.18、(1)景點D向公路a修建的這條公路的長約是3.1km;(2)景點C與景點D之間的距離約為4km.【解析】
解:(1)如圖,過點D作DE⊥AC于點E,過點A作AF⊥DB,交DB的延長線于點F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD?sin∠DBE=×(4﹣3)=≈3.1(km),∴景點D向公路a修建的這條公路的長約是3.1km;(2)由題意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景點C與景點D之間的距離約為4km.19、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.【解析】
分析:(1)待定系數法求解可得;
(2)先利用待定系數法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據此列出關于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標.詳解:(1)由拋物線過點A(-1,0)、B(4,0)可設解析式為y=a(x+1)(x-4),
將點C(0,2)代入,得:-4a=2,
解得:a=-,
則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;
(2)由題意知點D坐標為(0,-2),
設直線BD解析式為y=kx+b,
將B(4,0)、D(0,-2)代入,得:,解得:,
∴直線BD解析式為y=x-2,
∵QM⊥x軸,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
則QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴當-m2+m+4=時,四邊形DMQF是平行四邊形,
解得:m=-1(舍)或m=3,
即m=3時,四邊形DMQF是平行四邊形;
(3)如圖所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下兩種情況:
①當∠DOB=∠MBQ=90°時,△DOB∽△MBQ,
則,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
當m=4時,點P、Q、M均與點B重合,不能構成三角形,舍去,
∴m=3,點Q的坐標為(3,2);
②當∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,
此時m=-1,點Q的坐標為(-1,0);
綜上,點Q的坐標為(3,2)或(-1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.點睛:本題主要考查二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、平行四邊形的判定與性質、相似三角形的判定與性質及分類討論思想的運用.【詳解】請在此輸入詳解!20、(1);(2)見解析;(3)存在,2【解析】
(1)利用正方形的性質及全等三角形的判定方法證明全等即可;(2)由(1)可知,則有,從而得到,最后利用一組對邊平行且相等即可證明;(3)由(1)可知,則,從而得到是等腰直角三角形,則當最短時,的面積最小,再根據AB的值求出PB的最小值即可得出答案.【詳解】解:(1)四邊形是正方形,,,,,,在和中,在和中,,故答案為;(2)證明:由(1)可知,,四邊形是平行四邊形.(3)解:存在,理由如下:是等腰直角三角形,最短時,的面積最小,當時,最短,此時,的面積最小為.【點睛】本題主要考查全等三角形的判定及性質,平行四邊形的判定,掌握全等三角形的判定方法和平行四邊形的判定方法是解題的關鍵.21、①CD;②平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;③.【解析】
①根據作圖依據平行線分線段成比例定理求解可得;②根據“平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例”可得;③先證得,即,從而知.【詳解】①∵,∴OA:AB=OC:CD,∵,,,,∴線段就是所求的線段x,故答案為:②這位同學作圖的依據是:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;故答案為:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;③∵、,且,∴,∴,即,∴,∴.【點睛】本題主要考查作圖﹣復雜作圖,解題的關鍵是熟練掌握平行線分線段成比例定理、相似三角形的判定及向量的計算.22、x=-4是方程的解【解析】
分式方程去分母轉化為整式方程,求出整式方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代辦公環(huán)境下的健康與舒適
- 未來的工作環(huán)境科技與舒適性的平衡
- 現(xiàn)代辦公環(huán)境下的智能配送技術應用實例
- 2024秋七年級數學上冊 第4章 一元一次方程4.2 解一元一次方程 3用合并同類項法解方程說課稿(新版)蘇科版001
- Unit 4 History And Traditions Reading for Writing 說課稿-2023-2024學年高中英語人教版(2019)必修第二冊
- Unit 4 Friends Forever Understanding ideas click for a friend 說課稿-2024-2025學年高中英語外研版必修第一冊
- 2024年五年級英語下冊 Unit 2 How do you come to school第1課時說課稿 譯林牛津版
- 6 魯濱遜漂流記(節(jié)選)(說課稿)-2023-2024學年語文六年級下冊統(tǒng)編版
- 16《夏天里的成長》(說課稿)2024-2025學年部編版語文六年級上冊001
- Unit 2 Wildlife Protection Reading and Thinking Language Focus 說課稿-2024-2025學年高一上學期英語人教版(2019)必修第二冊001
- 蛋糕店服務員勞動合同
- 土地買賣合同參考模板
- 2025高考數學二輪復習-專題一-微專題10-同構函數問題-專項訓練【含答案】
- 四川省綿陽市2025屆高三第二次診斷性考試英語試題(含答案無聽力原文及音頻)
- 2025年天津市政建設集團招聘筆試參考題庫含答案解析
- 2025年八省適應性 歷史試卷(西北卷)
- 2024-2030年中國烘焙食品行業(yè)運營效益及營銷前景預測報告
- 2025年上半年水利部長江水利委員會事業(yè)單位招聘68人(湖北武漢)重點基礎提升(共500題)附帶答案詳解
- (2024)云南省公務員考試《行測》真題及答案解析
- 公司安全事故隱患內部舉報、報告獎勵制度
- 人教版高中物理必修二同步練習及答案
評論
0/150
提交評論