版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年河北省衡水市衡水中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.以下四個(gè)命題:①兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個(gè)數(shù)為()A.4 B.3 C.2 D.12.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.3.已知函數(shù),則不等式的解集為()A. B. C. D.4.正三棱柱中,,是的中點(diǎn),則異面直線與所成的角為()A. B. C. D.5.已知實(shí)數(shù)、滿足約束條件,則的最大值為()A. B. C. D.6.《九章算術(shù)》“少?gòu)V”算法中有這樣一個(gè)數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分?jǐn)?shù)進(jìn)行通分約簡(jiǎn),又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個(gè)照此同樣方法,直至全部為整數(shù),例如:及時(shí),如圖:記為每個(gè)序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17647.已知雙曲線(,)的左、右焦點(diǎn)分別為,以(為坐標(biāo)原點(diǎn))為直徑的圓交雙曲線于兩點(diǎn),若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.8.已知甲、乙兩人獨(dú)立出行,各租用共享單車一次(假定費(fèi)用只可能為、、元).甲、乙租車費(fèi)用為元的概率分別是、,甲、乙租車費(fèi)用為元的概率分別是、,則甲、乙兩人所扣租車費(fèi)用相同的概率為()A. B. C. D.9.在長(zhǎng)方體中,,則直線與平面所成角的余弦值為()A. B. C. D.10.若的展開式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.111.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.12.設(shè)集合,,則集合A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“對(duì)任意,”的否定是.14.已知函數(shù)為奇函數(shù),則______.15.已知集合,則_______.16.已知函數(shù),若關(guān)于的方程在定義域上有四個(gè)不同的解,則實(shí)數(shù)的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a18.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當(dāng)時(shí),求證:對(duì)于,恒成立;(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.19.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.20.(12分)橢圓:()的離心率為,它的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為.(1)求橢圓的方程;(2)設(shè)是直線上任意一點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,求證:直線恒過一個(gè)定點(diǎn).21.(12分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對(duì)出現(xiàn)例如,豌豆攜帶這樣一對(duì)遺傳因子:使之開紅花,使之開白花,兩個(gè)因子的相互組合可以構(gòu)成三種不同的遺傳性狀:為開紅花,和一樣不加區(qū)分為開粉色花,為開白色花.生物在繁衍后代的過程中,后代的每一對(duì)遺傳因子都包含一個(gè)父系的遺傳因子和一個(gè)母系的遺傳因子,而因?yàn)樯臣?xì)胞是由分裂過程產(chǎn)生的,每一個(gè)上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨(dú)立的.可以把第代的遺傳設(shè)想為第次實(shí)驗(yàn)的結(jié)果,每一次實(shí)驗(yàn)就如同拋一枚均勻的硬幣,比如對(duì)具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對(duì)母系也一樣.父系?母系各自隨機(jī)選擇得到的遺傳因子再配對(duì)形成子代的遺傳性狀.假設(shè)三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現(xiàn),則在隨機(jī)雜交實(shí)驗(yàn)中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實(shí)際上是父系和母系中兩個(gè)遺傳因子的個(gè)數(shù)之比.基于以上常識(shí)回答以下問題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對(duì)某一植物,經(jīng)過實(shí)驗(yàn)觀察發(fā)現(xiàn)遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個(gè)體,在進(jìn)行第一代雜交實(shí)驗(yàn)時(shí),假設(shè)遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續(xù)對(duì)(2)中的植物進(jìn)行雜交實(shí)驗(yàn),每次雜交前都需要剔除性狀為的個(gè)體假設(shè)得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設(shè)第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數(shù)列.(4)求的通項(xiàng)公式,如果這種剔除某種遺傳性狀的隨機(jī)雜交實(shí)驗(yàn)長(zhǎng)期進(jìn)行下去,會(huì)有什么現(xiàn)象發(fā)生?22.(10分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
①根據(jù)線性相關(guān)性與r的關(guān)系進(jìn)行判斷,
②根據(jù)相關(guān)指數(shù)的值的性質(zhì)進(jìn)行判斷,
③根據(jù)方差關(guān)系進(jìn)行判斷,
④根據(jù)點(diǎn)滿足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),而回歸直線必過樣本中心點(diǎn),可進(jìn)行判斷.【詳解】①若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1,故①正確;
②用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯(cuò)誤;
③若統(tǒng)計(jì)數(shù)據(jù)的方差為1,則的方差為,故③正確;
④因?yàn)辄c(diǎn)滿足回歸直線方程,但點(diǎn)不一定就是這一組數(shù)據(jù)的中心點(diǎn),即,不一定成立,而回歸直線必過樣本中心點(diǎn),所以當(dāng),時(shí),點(diǎn)必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯(cuò)誤;
所以正確的命題有①③.
故選:C.【點(diǎn)睛】本題考查兩個(gè)隨機(jī)變量的相關(guān)性,擬合性檢驗(yàn),兩個(gè)線性相關(guān)的變量間的方差的關(guān)系,以及兩個(gè)變量的線性回歸方程,注意理解每一個(gè)量的定義,屬于基礎(chǔ)題.2、B【解析】
由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).3、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)椋詾樯系呐己瘮?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)椋?,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、C【解析】
取中點(diǎn),連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點(diǎn),連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設(shè),則,,,則,∴.故選:C.【點(diǎn)睛】本題考查通過幾何法求異面直線的夾角,考查計(jì)算能力.5、C【解析】
作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對(duì)應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點(diǎn)時(shí),取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),取得最大值,最大值為.故選:C.【點(diǎn)睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí),屬于中檔題.6、A【解析】
根據(jù)題目所給的步驟進(jìn)行計(jì)算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點(diǎn)睛】本小題主要考查合情推理,考查中國(guó)古代數(shù)學(xué)文化,屬于基礎(chǔ)題.7、D【解析】
連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點(diǎn)睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8、B【解析】
甲、乙兩人所扣租車費(fèi)用相同即同為1元,或同為2元,或同為3元,由獨(dú)立事件的概率公式計(jì)算即得.【詳解】由題意甲、乙租車費(fèi)用為3元的概率分別是,∴甲、乙兩人所扣租車費(fèi)用相同的概率為.故選:B.【點(diǎn)睛】本題考查獨(dú)立性事件的概率.掌握獨(dú)立事件的概率乘法公式是解題基礎(chǔ).9、C【解析】
在長(zhǎng)方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長(zhǎng)方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點(diǎn)睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.10、B【解析】
由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.11、D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.12、B【解析】
先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對(duì)于集合A,,解得或,故.對(duì)于集合B,,解得.故.故選B.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查對(duì)數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對(duì)于有兩個(gè)根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號(hào)的另一邊化為,然后通過因式分解,求得對(duì)應(yīng)的一元二次方程的兩個(gè)根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.二、填空題:本題共4小題,每小題5分,共20分。13、存在,使得【解析】試題分析:根據(jù)命題否定的概念,可知命題“對(duì)任意,”的否定是“存在,使得”.考點(diǎn):命題的否定.14、【解析】
利用奇函數(shù)的定義得出,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)可求得實(shí)數(shù)的值.【詳解】由于函數(shù)為奇函數(shù),則,即,,整理得,解得.當(dāng)時(shí),真數(shù),不合乎題意;當(dāng)時(shí),,解不等式,解得或,此時(shí)函數(shù)的定義域?yàn)?,定義域關(guān)于原點(diǎn)對(duì)稱,合乎題意.綜上所述,.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性求參數(shù),考查了函數(shù)奇偶性的定義和對(duì)數(shù)運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.15、【解析】
由可得集合是奇數(shù)集,由此可以得出結(jié)果.【詳解】解:因?yàn)樗约现械脑貫槠鏀?shù),所以.【點(diǎn)睛】本題考查了集合的交集,解析出集合B中元素的性質(zhì)是本題解題的關(guān)鍵.16、【解析】
由題意可在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對(duì)稱的函數(shù)與函數(shù)的圖象有兩個(gè)交點(diǎn),運(yùn)用參變分離和構(gòu)造函數(shù),進(jìn)而借助導(dǎo)數(shù)分析單調(diào)性與極值,畫出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個(gè)不同的解等價(jià)于關(guān)于原點(diǎn)對(duì)稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個(gè)交點(diǎn),聯(lián)立可得有兩個(gè)解,即可設(shè),則,進(jìn)而且不恒為零,可得在單調(diào)遞增.由可得時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,即在處取得極小值且為作出的圖象,可得時(shí),有兩個(gè)解.故答案為:【點(diǎn)睛】本題考查利用利用導(dǎo)數(shù)解決方程的根的問題,還考查了等價(jià)轉(zhuǎn)化思想與函數(shù)對(duì)稱性的應(yīng)用,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)an=2n-1,bn=【解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計(jì)算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,裂項(xiàng)求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.18、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】
試題分析:(1)對(duì)函數(shù)求導(dǎo)后,利用導(dǎo)數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對(duì)分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當(dāng)時(shí),.解得.當(dāng)時(shí),解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設(shè),當(dāng)時(shí),由題意,當(dāng)時(shí),恒成立.,∴當(dāng)時(shí),恒成立,單調(diào)遞減.又,∴當(dāng)時(shí),恒成立,即.∴對(duì)于,恒成立.(3)因?yàn)椋桑?)知,當(dāng)時(shí),恒成立,即對(duì)于,,不存在滿足條件的;當(dāng)時(shí),對(duì)于,,此時(shí).∴,即恒成立,不存在滿足條件的;當(dāng)時(shí),令,可知與符號(hào)相同,當(dāng)時(shí),,,單調(diào)遞減.∴當(dāng)時(shí),,即恒成立.綜上,的取值范圍為.點(diǎn)睛:本題主要考查導(dǎo)數(shù)和單調(diào)區(qū)間,導(dǎo)數(shù)與不等式的證明,導(dǎo)數(shù)與恒成立問題的求解方法.第一問求函數(shù)的單調(diào)區(qū)間,這是導(dǎo)數(shù)問題的基本題型,也是基本功,先求定義域,然后求導(dǎo),要注意通分和因式分解.二、三兩問一個(gè)是恒成立問題,一個(gè)是存在性問題,要注意取值是最大值還是最小值.19、(1);(2)【解析】
(1)利用零點(diǎn)分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當(dāng)且僅當(dāng)時(shí)取“=”).所以的最小值為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及利用柯西不等式求最值.解絕對(duì)值不等式的基本方法有零點(diǎn)分段討論法、圖象法、平方法等,利用零點(diǎn)分段討論法時(shí)注意分類點(diǎn)的合理選擇,利用平方去掉絕對(duì)值符號(hào)時(shí)注意代數(shù)式的正負(fù),而利用圖象法求解時(shí)注意圖象的正確刻畫.利用柯西不等式求最值時(shí)注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.20、(1);(2)證明見解析.【解析】
(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2)設(shè)點(diǎn),,,由,,結(jié)合斜率公式化簡(jiǎn)得出,,即,滿足,由的任意性,得出直線恒過一個(gè)定點(diǎn).【詳解】(1)依題意得,解得即橢圓:;(2)設(shè)點(diǎn),,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,,,即直線恒過一個(gè)定點(diǎn).【點(diǎn)睛】本題主要考查了求橢圓的方程,直線過定點(diǎn)問題,屬于中檔題.21、(1),(或),的概率分別是,,.(2)(3)答案見解析(4)答案見解析【解析】
(1)利用相互獨(dú)立事件的概率乘法公式即可求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版私人二手房購(gòu)房定金支付與房產(chǎn)交易糾紛解決合同2篇
- 冠狀動(dòng)脈瘤樣擴(kuò)張患者的臨床特點(diǎn)及相關(guān)危險(xiǎn)因素分析
- 二零二五年度個(gè)人住房貸款合同編制細(xì)則2篇
- 2025版物業(yè)租賃安全生產(chǎn)安全責(zé)任保險(xiǎn)理賠服務(wù)合同3篇
- 提升財(cái)務(wù)運(yùn)營(yíng)效益的探索與實(shí)踐
- 應(yīng)急指揮系統(tǒng)的建設(shè)與完善
- 民族醫(yī)科護(hù)士工作總結(jié)
- 二零二五年度行政單位內(nèi)部職員服務(wù)合同范本3篇
- 美食行業(yè)烹飪技巧培訓(xùn)回顧
- 塑料行業(yè)塑料工工作總結(jié)
- 特種設(shè)備檢驗(yàn)現(xiàn)場(chǎng)事故案例分析
- 2023-2024學(xué)年西安市高二數(shù)學(xué)第一學(xué)期期末考試卷附答案解析
- 【京東倉(cāng)庫(kù)出庫(kù)作業(yè)優(yōu)化設(shè)計(jì)13000字(論文)】
- 監(jiān)獄監(jiān)舍門方案
- 煤礦安全生產(chǎn)方針及法律法規(guī)課件
- 宮頸癌后裝治療護(hù)理查房課件
- 員工內(nèi)部眾籌方案
- 復(fù)變函數(shù)與積分變換期末考試試卷及答案
- 初中班級(jí)成績(jī)分析課件
- 勞務(wù)合同樣本下載
- 聰明格練習(xí)題(初、中級(jí))
評(píng)論
0/150
提交評(píng)論