2024屆福建省惠安一中等三校高考臨考沖刺數(shù)學試卷含解析_第1頁
2024屆福建省惠安一中等三校高考臨考沖刺數(shù)學試卷含解析_第2頁
2024屆福建省惠安一中等三校高考臨考沖刺數(shù)學試卷含解析_第3頁
2024屆福建省惠安一中等三校高考臨考沖刺數(shù)學試卷含解析_第4頁
2024屆福建省惠安一中等三校高考臨考沖刺數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建省惠安一中等三校高考臨考沖刺數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.32.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.33.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.4.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內(nèi)一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.55.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.36.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.7.已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經(jīng)過點,若的面積為,則雙曲線的離心率為()A. B. C. D.8.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.639.設,,,則、、的大小關系為()A. B. C. D.10.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.11.設向量,滿足,,,則的取值范圍是A. B.C. D.12.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.14.已知x,y>0,且,則x+y的最小值為_____.15.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標準方程為________.16.的三個內(nèi)角A,B,C所對應的邊分別為a,b,c,已知,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個零點.18.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時間,對每個工人組裝一個該產(chǎn)品的用時作了記錄,得到大量統(tǒng)計數(shù)據(jù).從這些統(tǒng)計數(shù)據(jù)中隨機抽取了個數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學期望.19.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.20.(12分)某健身館為響應十九屆四中全會提出的“聚焦增強人民體質(zhì),健全促進全民健身制度性舉措”,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標準如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標準為20元(不足l小時的部分按1小時計算).現(xiàn)有甲、乙兩人各自獨立地來該健身館健身,設甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.(1)設甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數(shù)學期望;(2)此促銷活動推出后,健身館預計每天約有300人來參與健身活動,以這兩人健身費用之和的數(shù)學期望為依據(jù),預測此次促銷活動后健身館每天的營業(yè)額.21.(12分)如圖,直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點,直線y=p2與(1)求p的值;(2)設A是直線y=p2上一點,直線AM2交拋物線于另一點M3,直線M1M22.(10分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎題.2、A【解析】

根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結果,屬于簡單題.3、D【解析】

本道題結合雙曲線的性質(zhì)以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質(zhì)可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.4、A【解析】

根據(jù)幾何體分析正視圖和側視圖的形狀,結合題干中的數(shù)據(jù)可計算出結果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.5、C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;6、C【解析】

由于中正項與負項交替出現(xiàn),根據(jù)可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.7、B【解析】

根據(jù)題意,設點在第一象限,求出此坐標,再利用三角形的面積即可得到結論.【詳解】由題意,設點在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點,則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點睛】本題主要考查雙曲線的離心率,解決本題的關鍵在于求出與的關系,屬于基礎題.8、B【解析】

根據(jù)二項式展開式的通項公式,結合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.9、D【解析】

因為,,所以且在上單調(diào)遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數(shù)函數(shù)的單調(diào)性比較指對數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.10、A【解析】

由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點的坐標為,又,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎題.11、B【解析】

由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關鍵,是基礎題.12、B【解析】

由,可得,結合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數(shù)的單調(diào)性的應用,考查了學生的邏輯推理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】

先求出每地一名醫(yī)生,3名護士的選派方法的種數(shù),再減去甲乙兩名護士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護士的選派方法的種數(shù)有,若甲乙兩名護士到同一地的種數(shù)有,則甲乙兩名護士不到同一地的種數(shù)有.故答案為:.【點睛】本題考查利用間接法求排列組合問題,正難則反,是基礎題.14、1【解析】

處理變形x+y=x()+y結合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當且僅當時取等號,此時x=4,y=2,取得最小值1.故答案為:1【點睛】此題考查利用均值不等式求解最值,關鍵在于熟練掌握均值不等式的適用條件,注意考慮等號成立的條件.15、【解析】

設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設雙曲線方程為是解題的關鍵.16、【解析】

利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】

(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當x變化時,f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個零點.顯然x∈(π,2π)時,?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時,f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點.因為f(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時,f(x)>1,即f(x)在(?∞,?π)上也沒有零點.故f(x)僅在,上各有一個零點,即f(x)在R上有且僅有兩個零點.18、(1)43,47;(2)分布列見解析,.【解析】

(1)根據(jù)莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據(jù)數(shù)據(jù)可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調(diào)查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點睛】此題考查根據(jù)莖葉圖求眾數(shù)和中位數(shù),求離散型隨機變量分布列,根據(jù)分布列求解期望,關鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.19、(1).(2)1【解析】

(1)先根據(jù)題意建立空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2,由AN=λ,設N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因為PA⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因為∠BAD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因為M為PC的中點,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因為AN=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個法向量.因為直線MN與平面PBC所成角的正弦值為,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值為1.【點睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.20、(1)見解析,40元(2)6000元【解析】

(1)甲、乙兩人所付的健身費用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費用之和共有9種情況,分情況計算即可(2)根據(jù)(1)結果求均值.【詳解】解:(1)由題設知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數(shù)學期望(元)(2)此次促銷活動后健身館每天的營業(yè)額預計為:(元)【點睛】考查離散型隨機變量的分布列及其期望的求法,中檔題.21、(1)p=4;(2)OA?【解析】試題分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論